

Магниторезистивная память с записью электрическим полем

А.И. Морозов

Московский физико-технический институт (государственный университет)

Рассмотрены проблемы создания магниторезистивной памяти с записью электрическим полем (MERAM), основанной на обменном, зарядовом или упругом взаимодействии между электрочувствительным слоем и ферромагнитным слоем, входящим в состав магнитного туннельного соединения. Найдены ограничения на размер ячейки, связанные с существованием суперпарамагнитного порога.

Рис. 1. Магниторезистивная память на основе эффекта туннельного магнетосопротивления с записью электрическим полем. F - ферромагнитные слои, I слой изолятора, Е – электрочувствительный слой, S – подложка.

На данный момент обсуждаются три главных механизма взаимодействия между ферромагнитным и электрочувствительным слоем:

- обменная связь;
- упругая связь;
- зарядовая связь.

Рис. 2. Схематическое изображение характерных толщин для трех механизмов межслойного взаимодействия.

Рис.3. MERAM на основе зарядового (кулоновского) взаимодействия между слоями.

$$w = \left\{\frac{1}{2}\mu_0 M_s^2 + \frac{1}{d}\left(K_s + \Delta K_s(V)\right)\right\}\cos^2\varphi,$$

Рис. 4. W-G Wang et al. Nature Materials 11, 66 (2012).

Суперпарамагнитный порог

В полях E~10⁷ В/м для Fe/MgO или CoFe/BST ΔK_s ~7-8 мкДж/м² [Z. Zhou et al. Sci. Rep. **5**, 7740 (2015)].

Получаем $S_{min} \sim 200$ нм $\times 200$ нм. Нужны материалы с большим ΔK_{s} .

Окончательные выводы по данному виду памяти делать пока рано.

Обменное взаимодействие слоев

Электрочувствительный слой должен быть магнитоупорядоченным и для иметь спонтанную поляризацию, то есть быть слоем мультиферроика с температурами магнитного и сегнетоэлектрического упорядочения, превосходящими комнатную.

*BiFeO*₃, *T*_c=1143 К, *T*_N=643 К

Рис. 5. Схематическое изображение *R3c* структуры BiFeO₃, собранной из двух кубических ячеек перовскита.

Holcomb M.B., Martin L.W., Scholl A., He Q. et al. Probing the evolution of antiferromagnetism in multiferroics // Phys. Rev. B. 2010. 134406 (6 pp).

Упруго-сжатый *BiFeO*₃ на подложке *SrTiO*₃

Рис. 6. Ориентация векторов *L* и *М* при различных направлениях вектора *P*.

Рис. 7. Спин-флоп ориентация: M_1 , M_2 - намагниченности подрешеток верхней атомной плоскости антиферромагнетика, M – результирующая намагниченность, L – вектор антиферромагнетизма.

Выводы

ферромагнетика Перемагничивание СЛОЯ B ферромагнетик-мультиферроик, полностью системе обменным взаимодействием. определяется Электрическое поле приводит к развороту вектора поляризации и СВЯЗАННОГО С НИМ вектора антиферромагнетизма в слое мультиферроика, что, в свою очередь, приводит к развороту намагниченности ферромагнитного слоя на 90° за счет обменного взаимодействия на границе раздела ферромагнетикмультиферроик.

Наличие слабого ферромагнетизма и линейного магнитоэлектрического эффекта не являются необходимыми для реализации магниторезистивной памяти на основе нанослоев мультиферроика с записью электрическим полем.

Минимальный латеральный размер бита, диктуемый суперпарамагнитным пределом составляет 7 нм.

Упругое взаимодействие слоев

Возможны два случая:

- Переориентация происходит между двумя положениями равновесия, существовавшими в отсутствие взаимодействия с электрочувствительным слоем. Электрочувствительный слой является слоем пьезоэлектрика.

- Направление намагниченности ферромагнитного слоя определяется остаточной деформацией электрочувствительного слоя сегнетоэлектрикасегнетоэластика.

Случай 1.

 $w_{me} = B_1(\varepsilon_{11}m_1^2 + \varepsilon_{22}m_2^2 + \varepsilon_{33}m_3^2) + B_2(\varepsilon_{12}m_1m_2 + \varepsilon_{13}m_1m_3 + \varepsilon_{1$

 $+\varepsilon_{23}m_2m_3)$,

В

Случай 1.

Недостатком описанной памяти является малое значение константы кубической анизотропии (для железа $K_0=24 \text{ кДж/м}^3$), что приводит, вследствие существования суперпарамагнитного порога, к ограничению снизу на объем переключаемого ферромагнитного слоя. Для случая железа, объем ферромагнитного слоя должен превосходить 2·10⁴ нм³. То есть для слоя толщиной 2 нм его размеры в плоскости слоя должны превосходить 100 нм.

характерных значений пьезоэлектрических Для *d_{ijk}~2-4*10⁻¹⁰ Кл/Н и напряженностей* модулей электрических полей Е<1 MB/m, получаем относительную деформацию *ε*~0.01-0.03. Поскольку в рассматриваемого механизма наводимая случае превышать анизотропия должна магнитная собственную анизотропию ферромагнитного слоя (в противном случае система не преодолеет барьера двумя равновесными направлениями между намагниченности, существовавшими в отсутствие взаимодействия с электрочувствительным слоем), то при *В* ~ -10 МДж/м³ получаем ограничение на объемную плотность собственной энергии анизотропии ферромагнитного слоя $K_0 < 1-3 \text{ кДж/м}^3$.

Столь малое значение константы анизотропии увеличивает минимальный объем, необходимый для превышения суперпарамагнитного предела, а вместе с ним и минимальный латеральный размер ячейки.

Вторая проблема, возникающая при создании MERAM на основе упругого взаимодействия слоев, связана с тем, что при создании памяти электрочувствительный слой должен быть индивидуален для каждой ячейки, а общая подложка должна быть пассивным элементом. При этом она препятствует деформации электрочувствительного слоя под действием электрического поля.

Исключить указанное действие подложки можно выбором формы электрочувствительного слоя: толщина электрочувствительного слоя должна намного превосходить его латеральный размер (память «на длинной ноге»). При используемых значениях электрического напряжения ~ 0.1 - 1 В и полях переключения 10⁵ В/м латеральный размер ячейки / оказывается ограниченным сверху величиной порядка сотен нанометров – единицы микрон.

Рис.8. Область деформации электрочувствительного слоя вблизи подложки.

Случай 2.

Срез (110) электрочувствительного слоя сегнетоэлектрика-сегнетоэластика Pb(Mg_{1/3}N_{2/3})_{0,68}Ti_{0,32}O₃ (PMN-PT). Спонтанная сегнетоэлектрическая поляризация направлена вдоль одной из осей типа [111] ромбоэдрически искаженной перовскитоподобной структуры (восемь возможных направлений).

Приложение электрического поля напряженностью E<10⁶ В/м приводит к переполяризации образца.

Рис. 9. Возможные направления вектора поляризации в кристалле PMN-PT.

Оценим ограничения на латеральные размеры ячейки, накладываемые существованием суперпарамагнитного порога. Исходя из значения ромбоэдрического угла PMN-PT *α*=89.1° легко найти, что при развороте вектора поляризации из положения 1 в положение 5 (рис. 4) деформация сжатия $\varepsilon = -0.08\%$ кубической решетки сменяется деформацией растяжения $\varepsilon = 0.08\%$. Она передается ферромагнитному слою CoFeB, наводя в нем вследствие магнитоупругого взаимодействия магнитную анизотропию с объемной плотностью энергии К=Вε~10⁴ Дж/м³ (В магнитоупругая константа аморфного СоFeB ~ -10 МДж/м³). Это дает для I_{min} величину ~100 нм. У терфенола D константа B в 20 раз больше, что дает значение *I_{min}* ~ 20 нм.

Рис.10. Расположение электродов на электрочувствительном слое. На вставке указано направление спонтанной поляризации.

Выводы

Проведенное рассмотрение видов упругого взаимодействия ферромагнитного и электрочувствительным слоев показывает, что применение в качестве материала электрочувствительного слоя сегнетоэлектрика-сегнетоэластика является наиболее перспективным для создания MRAM с записью электрическим полем.

При создании MRAM, в которой электрическое поле прикладывается перпендикулярно слою PMN-PT, необходимо экспериментально определить характерное число последовательных циклов перехода вектора поляризации в метастабильное состояние между двумя неудачными переключениями, сопровождающимися его срывом в равновесное состояние. 30

Исследование прототипа памяти на основе слоя сегнетоэлектрика-сегнетоэластика следует проводить не на активной, а на пассивной подложке, создав на ней электрочувствительный слой PMN-PT с размерами, соответствующими отдельной ячейке.

СПАСИБО

внимание

F Рис.11. Срез (111). Ориентация намагниченностей ферромагнитного слоя (*F*) и атомных плоскостей *BiFeO*₃ при противоположных направлениях вектора
BiFeO₃ поляризации, θ - угол скоса намагниченностей подрешеток *BiFeO*₃.

Co_{0,9}Fe_{0,1} •Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh. Nature Materials **7**, 478 (2008).

• J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y-H. Chu, S. Salahuddin, R. Ramesh. Phys. Rev. Lett **107**, 217202 (2011).

La_{0,7}Sr_{0,3}MnO₃

• S.M. Wu, S.A. Cybart, D. Yi, J.M. Parker, R. Ramesh, R.C. Dynes. Phys. Rev. Lett. **110**, 067202 (2013).

ЭВОЛЮЦИЯ ВЕКТОРА АНТИФЕРРОМАГНЕТИЗМА МУЛЬТИФЕРРОИКА BiFeO₃ В ПРОЦЕССЕ ПЕРЕКЛЮЧЕНИЯ ЕГО СЕГНЕТОЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗАЦИИ

Спин-орбитальное взаимодействие ориентирует вектор антиферромагнетизма перпендикулярно вектору спонтанной поляризации. Вклад Φ_1 данного взаимодействия в энергию Гиббса можно выразить через соответствующий инвариант

$$\Phi_1 = \alpha(\boldsymbol{pl})^2, \tag{1}$$

где $\alpha > 0$, а единичные векторы *p* и *l* задают направления векторов *P* и *L* соответственно.

Наряду с указанной одноосной анизотропией необходимо учитывать вклад Φ_2 кубической анизотропии в виде

$$\Phi_2 = -\beta \left(l_x^4 + l_y^4 + l_z^4 \right), \tag{2}$$

где β – константа кубической анизотропии, l_x, l_y, l_z – координаты вектора l.

Вклад магнитоупругого взаимодействия с подложкой в энергию Гиббса записывается в виде

$$\Phi_3 = -\gamma(\boldsymbol{nl})^2, \tag{3}$$

где **n** - единичный вектор нормали к плоскости слоя, а константа взаимодействия γ положительна в случае сжимающих и отрицательна в случае растягивающих подложек.

$$\Phi = \Phi_1 + \Phi_2 + \Phi_3. \tag{4}$$

 $\beta = 0; \pm 0.01$

 $\gamma = \pm 0.01$

 $\alpha = 1$

Лекция 10

37

Срез	Вид деформа ции	Направление эл. поля	Исходное направлен ие вектора Р	Конечное направле ние вектора Р	Исходное направле ние вектора <i>L</i>	Конечное направлен ие вектора <i>L</i>	Исходное направление вектора <i>М</i>	Конечное направление вектора М
(001)	Сжатие	В плоскости слоя, параллельно [100]	[111]	[111]	[112]	[112]	[110]	[110]
(001)	Сжатие	В плоскости слоя, параллельно [110]	[111]	[11]	[112]	[112]	[110]	[110]
(001)	Растяже ние	Перпендикул ярно слою, параллельно [001]	[111]	[111]	[110]	[110]	[11 <u>2</u>]	[112]
(110)	Растяже ние	Перпендикул ярно слою, параллельно [110]	[111]	[ĪĪ1]	[110]	[110]	[112 <u>]</u>	[112]
(110)	Растяже ние	В плоскости слоя, параллельно [001]	[111]	[111]	[110]	[110]	[112̄]	[112]

Срез (001)

Прикладывая электрическое поле параллельно ребру и диагонали грани в плоскости упруго сжатого слоя, можно развернуть вектор M, лежащий в плоскости слоя, на 90° и 180°

Приложение поля перпендикулярно слою, как видно из таблицы, оставляет неизменным вектор L, переключает на 180° латеральную составляющую вектора M, но оставляет неизменной перпендикулярную слою компоненту этого вектора. Последний недостаток компенсируется возможностью использования перпендикулярного слою напряжения.

Срез (110)

В случае упруго растянутого слоя приложение поля в плоскости слоя вдоль направления [00 1] изменяет знак перпендикулярной составляющей вектора М, оставляя латеральную составляющую неизменной. Такая конфигурация «срез-деформация-направление поля» перспективна для создания памяти с перпендикулярной записью, то есть с намагниченностями ферромагнитных слоев туннельного соединения, перпендикулярными слоям. Если же поле приложено перпендикулярно слою, то, как и в случае среза (001), при неизменных векторе L и перпендикулярной составляющей вектора **М**, происходит разворот на 180° латеральной составляющей вектора М.

Рис. 3. Скорость и энергоэффективность существующих (NAND и NOR видов флеш-памяти) и появляющихся (MERAM, STT-MRAM, память на фазовых-переходах PCRAM, ферроэлектрическая FeRAM и резистивная память RRAM) энергонезависимых технологий памяти.