Теоретические и экспериментальные исследования перспективного квантового регистра в канале нанотранзистора с fin-каналом

В.Ф. Лукичев, К.В. Руденко, В.В. Вьюрков

Физико-технологический институт РАН

ЦЕЛЬ РАБОТЫ

- Конечная цель универсальный полномасштабный квантовый компьютер.
- Промежуточные цели квантовые симуляторы:
- поиск глобального минимума с помощью квантового отжига (quantum annealing аналогично DWaveSys);
- квантовые блуждания фотоэлектрона в молекуле хлорофилла и др.

Предложенный масштабируемый квантовый регистр

Квантовый регистр является многозатворным полевым транзистором и может быть изготовлен на технологическом оборудовании ФТИАН. Количество кубитов в цепочке может быть увеличено.

Предыстория

- Квантовый компьютер на основе двойных квантовых точках
- Fedichkin, M. Yanchenko, K.A. Valiev, Nanotechnology 11, 387 (2000) 141, 146 39.
- Квантовый компьютер без перемещения заряда (борьба с декогерентизацией)
- V. Vyurkov, S. Filippov, L. Gorelik. Quantum computing based on space states without charge transfer. Physics Letters A 374, 3285– 3291 (2010)
- Измерение состояния квантового регистра в канале транзистора в режиме кулоновской блокады тока
- M. Rudenko, V. Vyurkov, S. Filippov, A. Orlikovsky. Quantum register in a field-effect transistor channel. Int. Conf. "Micro- and nanoelectronics – 2014", Moscow, Russia, October 6-10, 2014, Book of Abstracts, p. q1-05

Конструкция «квантового регистра в канале транзистора», предложенная во ФТИАН

Регистр напоминает многозатворный полевой транзистор и может быть изготовлен на технологическом оборудовании ФТИАН

Для сравнения: перспективные конструкции

транзисторов для УБИС

Intel Corp.

Многоканальный транзистор – прообраз ансамблевого квантового регистра, предложенного во ФТИАН

Почему кремний?

- Кремниевая технология позволяет формировать наиболее совершенные структуры.
- Граница Si/SiO2 обладает рекордно низкой концентрацией дефектов.
- Значительно подавлены процессы перезарядки ловушек (1/f шум).

Конструкция кубита из двух двойных квантовых точек

- В каждой из точек постоянно находится половина электрона. Таким образом, прямое кулоновское взаимодействие является неизменным и может быть скомпенсировано.
- Состояние кубита описывается двумя фазами, энергия любых состояний кубита одинакова.
- Реализуется идея вычислений в основном состоянии, что подавляет процессы декогерентизации.

Вычисления производятся на состояниях

электронов в квантовых точках

в канале транзистора

Потенциальный рельеф в канале, управляемый затворами Базисные состояния двойных квантовых точек (DQD)

Симметричное состояние

Антисимметричное состояние

Basic states in a DQD

Electron wave-function in a DQD

Basic states of two DQDs (without charge transfer !)

Potential in two DQDs

Wave-function of two electrons in two DQDs

Basic states of a qubit

Spin-polarized electrons:

$$|0\rangle = \frac{1}{\sqrt{2}} \left(|+_1 - _2\rangle - |+_2 - _1\rangle \right)$$

 $|1\rangle = \frac{1}{\sqrt{2}} \left(|-_1+_2\rangle - |-_2+_1\rangle \right)$

Qubit states

Qubit states

Выполнение двухкубитных квантовых операций

- Доказано выполнение двухкубитных квантовых операций SWAP (обмен состояниями), sqrtSWAP и CNOT, достаточных для универсального квантового компьютера.
- Взаимодействие кубитов основано на управляемом обменном взаимодействии спин-поляризованных электронов.

Realization of SWAP-gate

Цепочка квантовых точек свернута для удобства рассмотрения

Realization of sqrt-SWAP

Цепочка квантовых точек свернута для удобства рассмотрения

Realization of CNOT-gate

As far as matrices 4×4 are concerned, a controlled phase shift gate is given by the formula [2]

$$(\hat{Z}_1(\pi/2) \otimes \hat{Z}_2(-\pi/2)) \cdot \sqrt{SWAP} (\hat{Z}_1(\pi) \otimes \hat{1}_2) \cdot \sqrt{SWAP},$$
 (23)

where \hat{Z} is the phase shift gate. In a similar way, direct calculation shows that in our case

$$\hat{\Pi} = \left[\left(\hat{Z}_1(\pi/2) \otimes \hat{Z}_2(-\pi/2) \right) \cdot \sqrt{SWAP} \right]^2 \\ \times \left(\hat{Z}_1(\pi) \otimes \hat{1}_2 \right) \cdot \sqrt{SWAP}.$$
(24)

Eventually, the CNOT operation looks like

$$CNOT = (\hat{1}_1 \otimes \hat{H}_2) \cdot \hat{\Pi} \cdot (\hat{1}_1 \otimes \hat{H}_2), \tag{25}$$

where \hat{H} is Hadamard's transformation:

$$\hat{1}_1 \otimes \hat{H}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0\\ 0 & \sqrt{2} & 0 & 0 & 0 & 0\\ 1 & 0 & -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & \sqrt{2} & 0\\ 0 & 0 & 0 & 1 & 0 & -1 \end{pmatrix}.$$
(26)

Борьба с декогерентизацией-1

Общий прием подавления шумов – ансамблевый квантовый регистр, предложенный во ФТИАН – множество регистров, работающих параллельно.

Борьба с декогерентизацией-2

- 1. Технологический разброс параметров кубитов,
- 2. случайные статические заряженные дефекты,
- З. постоянное кулоновское взаимодействие кубитов
- компенсируются при настройке кубитов.

Борьба с декогерентизацией- 3

- 4. Тепловой шум управляющих электродов,
- 5. взаимодействие с фононами,
- 6. перезарядка ловушек
- подавляются понижением температуры, выбором материала (кремния) и специальной конструкцией кубитов.

Измерение конечного состояния регистра – считывание результата

- Пропускание тока по каналу при создании условий кулоновской блокады для измеряемой квантовой точки.
- Кубиты измеряются поочередно.
- Измерения необходимы и при настройке кубитов.

Измерение состояния регистра с помощью пропускания тока по каналу

Создание условий кулоновской блокады для определения, находится ли электрон в измеряемой квантовой точке

Ток от напряжения на затворе измеряемой квантовой точки

Technology and diagnostics

Technology setup

Diagnostics

- Electron lithography RAITH-150 (Germany)
- Optical lithography M-576
- Electron-beam spattering Balzers UMS-500
- Plasma Atomic Layer Deposition (Oxford Instruments)
- Magnetron deposition
- Pilot plasma processing line (IPT RAS):
- Anisotropic etching (Oxford Instruments);
- Dielectrics deposition;
- Plasma immersion ion implantation.
- Rapid annealing RTA AST-100 (Germany)

- SEM Leo Supra (Carl Zeiss, Germany)
- SIMS IonTOF (ION-TOF GmbH)
- AFM Nanopics 2100 (KLA Tencor, USA)
- Spectral ellipsometer Woolam (USA)
- Electrical characterization: Keithley 4200-SCS (USA) Micromanipulator 7100 (USA)

Сквозное анизотропное травление HkMG-стека селективно к области S/D

PlasmaLab 100Dual (Oxford Instruments Plasma Technology)

Оптимизированный процесс анизотропного травления поликремния в плазме C4F8/SF6.

Трехшаговый процесс ПХТ в кластере PlasmaLab 100 Dual:

- Камера 1: Слой poly-Si: Плазма SF6/C4F8, S (poly-Si/TaN) = 20
- Камера 2: Слой TaN+HfN: Плазма BCl3/N2 recipe 1, S(TaN/HfO2) = 10
- Камера 2: Слой HfO2+IL: Плазма BCl3/N2 recipe 2, S(HfO2/Si) = 25-35

Сохранение критического размера

с точностью 1 нм

Результат анизотропного травления стека poly-Si(50нм)/TaN(15 нм)/HfN(2нм) селективно к нижележащему слою диэлектрика HfO2. Остаточная толщина электронного резиста 25-27 нм.

Si recess < 1 HM

Результат 2017 года. Возможности прецизионного анизотропного плазменного травления. Кремниевые Finструктуры, CD = 11 нм

Маска электронного резиста HSQ XR-1541. Точность переноса CD в процессе ПХТ ~ 1 нм (разрешение РЭМ)

Silicon nanowires at IPT RAS: I Plasma etch

Process was transferred to SOI

11 nm fins on Si

Результат 2017 года. Кремниевые Fin-структуры с удаленным нарушенным слоем, CD = 7.8 нм

Результат 2018 года. Кремниевые Fin-структуры с осажденными ALD-слоями HkMG-стека TaN(10 нм)/HfO2(5 нм)

Fin-структуры, CD = 30 нм, стек HkMG 16 нм

Fin-структуры, CD = 10 нм, стек HkMG 16 нм

Structures

NW on SOI array

Released Si NW (top view) on SOI after HF etch

10.4 nm

выводы

- Предложена конструкция твердотельного квантового регистра на основе кремниевого полевого транзистора типа fin-FET.
- В регистре подавлены все основные процессы декогерентизации.
- Регистр может быть изготовлен во ФТИАН.
- Требуется криогенная многоканальная измерительная аппаратура.

Milestones

- Manin (1980) and Feynman (1982): proposals to use a quantum system for simulation of a quantum system.
- Grover's algorithm (1996): selection in unsorted data base of N elements
 - \Box Classical ~N;
 - \Box Quantum ~N^{1/2};
- Shor's algorithm (1994) of factorization (undermines modern secret communication).
 - □ Classical factoring algorithm (2^{logN})^{1/2}
 - □ Shor's quantum factoring algorithm O(logN³)

Технический облик квантового регистра

O Capyright Synaergie Casi Probe

Интегральная схема регистра, подключенная к управляющей и измерительной системе.

Лабораторный облик

Микросхема регистра с контактами

Измерительная установка

Contacts to ultra-thin SOI

Ti(8 nm)/Co(10 nm)/Ti(5 nm)/Si

Technology: TIME – SALISADE

Ultra-shallow ion implantation

New technique: plasma immersion implantation. Advantages: $I_{ion} > 10 \text{ mA/cm}^2$ at $E_i < 5 \text{ keV}$, $D > 10^{15} \text{ cm}^{-2}$ per 1 min.

High-k gate dielectrics

Formation:

- Surface pre-treatment in high vacuum.
- Electron-beam evaporation of HfO2 or ZrO2.
 - 1) Low charge density on dielectric/Si interface.
 - 2) Low leakage current.

Параметры сформированных подзатворных диэлектриков

Материал	Толщина	Е_{отн.}	Ток утечки (при 1 В)	Плотность встроенного заряда на границе Диэлектрик/Si
ZrO ₂	3—5 нм	18-21	< 5·10 ⁻⁶ А/см ²	(3-3.7)·10 ¹⁰ cm ⁻²
HfO ₂	3—5 нм	20-21	$< 3.10^{-6} \text{ A/cm}^{2}$	(7-9.9))·10 ¹⁰ см ⁻²

Metal gate

Plasma etching setup designed at IPT RAS in 2006.

In situ diagnostics: spectral end-point detector.

Tungsten gate 30 nm

Electron-beam lithography for CD < 45 nm

Resist mask 30 nm for gate formation

PMMA-950-K2 as electron negative resist (overexposure dose).

Classical computer: bits

Bit

Discrete |0> or |1>

Bits

Classical register |1>|0>|1>|1>|0>... N integer numbers

Sequential computing

Quantum computer: qubits

Qubit

Analog Qubit compositional state $\Psi = \alpha |0\rangle + \beta |1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$

Qubits

Quantum register (entangled state)

2^N-dimensional Hilbert space:

2^N complex numbers => big memory capacity

 2^{300} > number of atoms in Universe

Quantum parallelism of calculation

Great acceleration of several algorithms!

Entangled states

МФТИ 2013

Five demands to quantum computers: guidelines for inventors

- Quantum register is composed of qubits, i.e two-level quantum systems (a large-scale QC contains at least 1000 qubits);
- 2) Initialization procedure is to be provided;
- 3) Performance of one- and two-qubit operations with the accuracy not worse than 0.01%;
- Decoherence processes of quantum register to be much suppressed;
- 5) Read out of a final state as precise as possible.

Atoms and quantum dots as qubits

STM lithography of donors

Quantum dots

Quantum dot architecture

SiGe quantum dot

МФТИ 2013

Kane's quantum computer, 1998 (still beyond technology)

lons in traps (plasma instabilities seem possible)

МФТИ 2013

Two superconducting qubits (current fluctuations)

Double quantum dots defined in 2DEG

Potential defined quantum dots

POTENTIAL RELIEF ALONG THE CHANNEL

 $\mathcal{E}_{0} \sim \hbar^{2} \left[\frac{1}{m_{l}d_{si}} + \frac{1}{m_{t}D} \right]$ $m_{t} = 0.19m_{0}, m_{l} = 0.98m_{0}$ $d_{si} \sim 2nm, D \sim 10nm$ $\mathcal{E}_{0} \sim 0.02eV$

Coulomb repulsion energy $\mathcal{E}_C \sim 0.01 eV$

=> one electron in a dot

Light at the end of the tunnel

Ŋ8

Ŋ8