

Статус Работ по Акустоэлектронике в ИПТМ РАН

Д.В. Рощупкин, Д.В. Иржак, Е.В. Емелин

План

- 1. Сегнетоэлектрические кристаллы LiNbO₃ и LiTaO₃
- 2. Пьезоэлектрические кристаллы семейства La₃Ga₅SiO₁₄
- 3. Визуализация акустических волновых полей в кристаллах методом сканирующей электронной микроскопии
- 4. Рентгеновские методы исследования акустических волновых полей
- 5. Дифракция нейтронов на акустически промодулированных кристаллах
- 6. Датчики UV-излучения
- 7. Акустостимулированный транспорт носителей заряда в графене
- 8. Микрофлюидика

1. Сегнетоэлектрические кристаллы LiNbO₃ и LiTaO₃

Установка выращивания оксидных кристаллов методом Чохральского "NIKA-3M"

Процесс роста 2" кристалла LiNbO₃

Кристаллы LiNbO₃ и LiTaO₃

ОАО «Фомос-Материалс»

Кристаллы LiNbO₃

Ø 90 мм

Ø 95 мм

Интеграция материалов с различными свойствами

Кристаллы LiTaO₃

Ø 80 мм

Ø 80 мм

Joint Project of RFBR (Grant No 19-52-12044) and DFG (Grant No FR1301/32-1): Твердые растворы кристалла Li(Nb,Ta)O₃

- T. Fukuda, H. Hirano, Solid-solution LiTa_xNb_{1-x}O₃ single crystal growth by Czochralski and edge-defined filmfed growth technique, *J. Crystal Growth*, Vol. 35, 1976, pp. 127-132.
- 2. F. Shimura, Y. Fujino, Crystal growth and fundamental properties of LiNb_{1-y}Ta_yO₃, *J. Crystal Growth*, Vol. 38, 1977, pp. 293-302.
- A. Bartasyte, A. M. Glazer, F. Wondre, D. Prabhakaran, P. A. Thomas, S. Huband, D. S. Keeble and S. Margueron, Growth of LiNb_{1-x}Ta_xO₃ solid solution crystals, *Mater. Chem. Phys.*, Vol. 134, 2012, pp. 728-735.

Фазовая диаграмма системы LiNbO₃-LiTaO₃

- F. Shimura and Y. Fujino, Crystal growth and fundamental properties of LiNb_(1-y)Ta_yO₃, *J. Crystal Growth*, Vol 38, 1977, pp. 293-302. Первый удачный результат LiNb_{0.9}Ta_{0.1}O₃, маленькая скорость вытягивания кристалла, маленький размер.
- 2. Выращивание кристаллов из растворов в расплаве (*top seed solution growth method*), растворы: Li_2VO_4 , Li_2WO_4 and $LiBO_2$.

Монокристаллы твердого раствора LiNb_{0.88}Ta_{0.12}O₃

Элемент	C, mass %		
Li	3.0 ± 0.1		
Nb	48.2 ± 0.5		
Та	13.4 ± 0.2		

Черноголовка - 27 ноября 2019

Измерение температуры Кюри

Сканирующая дифференциальная калориметрия

	Point symmetry group	T_m (°C)	$T_{C}(^{\circ}C)$
LiNbO ₃	3m	1240	1190
LiNb _{0.88} Ta _{0.12} O ₃	3m	1320	1102
LiTaO ₃	3m	1650	650

Параметры элементарной ячейки кристалла LiNb_{0.88}Ta_{0.12}O₃

Кристалл LiNb _{0.88} Ta _{0.12} O ₃ Класс симметрии 3m Cu K _{α1} λ=1.540600 Å

a=b=5.15101 Å c=13.81643 Å

4-х кружный рентгеновский дифрактометр Bruker D8 DISCOVER

Черноголовка - 27 ноября 2019

Ν	hkl	d (Å)	2Theta (°)
1	012	3.74797	23.7204
2	104	2.73192	32.7548
3	110	2.57580	34.8014
4	006	2.30297	39.0820
5	113	2.24770	40.0837
6	202	2.12243	42.5609
7	024	1.87328	48.5609
8	116	1.71687	53.3161
9	018	1.61056	57.1463
10	214	1.51526	61.1095
11	300	1.48690	62.4042
12	208	1.36557	68.6777
13	1010	1.31918	71.4540
14	220	1.28792	73.4675
15	306	1.24898	76.1573

	a (Å)	c (Å)
LiNbO ₃	5.1502	13.8653
LiNb _{0.88} Ta _{0.12} O ₃	5.1510	13.8164
LiTaO ₃	5.2135	13.7694

Акустические свойства кристалла LiNb_{0.88}Ta_{0.12}O₃

Линия задержки на ПАВ, YZ-срез Λ =60 мкм, f_0 =57.33 МГц, V=3440 м/с

Черноголовка - 27 ноября 2019

Схема двухкристального рентгеновского дифрактометра на источнике СИ BESSY II

Стандартный метод Чохральского

Element	Mass %	Atomic %
Nb	25.0±1.3	48
Та	41.2±2,2	52

Top seed solution growth method: LiNb_{0.86}Ta_{0.14}O₃ + Li₂NO₃

Element	C, mass %		
Li	4.1		
Nb	51.3		
Та	14.6		

Перспективы:

(1) Рост кристаллов LiNbO $_3$ и LiTaO $_3$ стехиометрического состава

(2) Выращивание допированных кристаллов LiNbO₃ и LiTaO₃: Gd, Cu, Cr, Fe, Mg

2. Пьезоэлектрические кристаллы семейства La₃Ga₅SiO₁₄, OAO «ФОМОС Материалс»

Перспективные пьезоэлектрические кристаллы для опто- и акустоэлектроники Кристаллы семейства La₃Ga₅SiO₁₄ (LGS, лангасит), точечная группа симметрии 32

4" неупорядоченный кристалл La₃Ga₅SiO₁₄, выращенный вдоль оси {001}

Основные характеристики:

- 1. отсутствие фазовых переходов вплоть до температуры плавления (1470 °C),
- высокие значения коэффициентов электромеханической связи, больше чем у αкварца,
- 3. нулевые температурные коэффициенты частоты для ряда срезов,
- 4. маленькие скорости ПАВ, что позволяет делать миниатюрные акустоэлектронные устройства,
- 5. стабильные физические и химические свойства.

3" упорядоченный кристалл Ca₃TaGa₃Si₂O₁₄ (CTGS), выращенный вдоль оси {001}

Упорядоченный кристалл Ca₃NbGa₃Si₂O₁₄ (CNGS), выращенный вдоль оси {110}

Измерение независимых пьезомодулей (d_{11}, d_{14}) в кристаллах семейства LGS

Measurement of d_{14} in the Laue diffraction geometry. Reflection (201)

Независимые пьезомодули d_{11} и d_{14} в кристаллах LGTA и CTGS

References	La ₃ Ga _{5.3} Ta _{0.5} Al _{0.2} O ₁₄ (LGTA)		Ca ₃ TaGa ₃ Si ₂ O ₁₄ (CTGS)	
	d ₁₁ ×10⁻¹² (C/N)	d ₁₄ ×10 ^{−12} (C/N)	d ₁₁ ×10⁻¹² (C/N)	d ₁₄ ×10 ^{−12} (C/N)
Ref. 1	6.6	-	-	-
Ref. 2	-	-	-4.58	10.43
Ref. 3	6.455	-5.117	3.331	-15.835

- Shujun Zhang, Akira Yoshikawa, Kei Kamada, Eric Frantz, Ru Xia, David W. Snyder, Tsuguo Fukuda, and Thomas R. Shrout, <u>Growth and characterization of high temperature La₃Nb_{0.5}Ga_{5.3}Al_{0.2}O₁₄ (LNGA) and La₃Ta_{0.5}Ga_{5.3}Al_{0.2}O₁₄ (LTGA) piezoelectric single crystals, Solid State Comm. 148 213 (2008).
 </u>
- 2. Xuzhong Shi, Duorong Yuan, Xin Yin, Aijian Wei, and Shiyi Guo, Fapeng Yu, <u>Crystal growth and dielectric</u>, <u>piezoelectric and elastic properties of Ca₃TaGa₃Si₂O₁₄ single crystal</u>, Solid State Comm. 142 173 (2007).
- 3. Dmitry Irzhak and Dmitry Roshchupkin, Piezoelectric strain coefficients in La₃Ga_{5.3}Ta_{0.5}Al_{0.2}O₁₄ and Ca₃TaGa₃Si₂O₁₄ crystals, AIP Advances 3 102108(7) (2013).

Кристал	d ₁₁ × 10 ⁻¹² (C/N)	d ₁₄ × 10 ⁻¹² (C/N)	
La ₃ Ga ₅ SiO ₁₄ (LGS)	5.9403	-4.8344	D. Irzhak and D. Roshchupkin,
La ₃ Ga _{5.5} Ta _{0.5} O ₁₄ (LGT)	-6.5057	4.5279	Measurement of independent
La ₃ Ga _{5.3} Ta _{0.5} Al _{0.2} O ₁₄ (LGTA)	6.455	-5.117	piezoelectric moduli of $Ca_3NbGa_3Sl_2O_{14}$, L $a_3Ga_{5.5}Ta_{0.5}O_{14}$ and L $a_3Ga_5SiO_{14}$ single crvstals. J. Appl. Crvst. (2018), 51, 1174–
Ca ₃ TaGa ₃ Si ₂ O ₁₄ (CTGS)	3.331	-15.835	1181
Ca ₃ NbGa ₃ Si ₂ O ₁₄ (CNGS)	-4.4409	12.638	

Исследование оптических свойств пьезоэлектрического кристалла La₃Ga_{5.5}Ta_{0.5}O₁₄

Диапазоны прозрачности (белые полосы) и измеренные спектральные диапазоны, генерируемые в BBO, KTA, PPLN и LGT при использовании излучения ~0.8 мкм (синие полосы) и ~1 мкм (оранжевые полосы).

Порог повреждения в зависимости от нелинейного коэффициента d_{ij} для оксидов щелочных металлов (AMO₃), дифосфиды металлического полупроводника (MSP₂), полупроводников II-III/V-VI, кристаллов Li III-IV=LiGaS₂, LiInS₂ и LiInSe₂, измеренные в наносекундном режиме.

- Elodie Boursier, Patricia Segonds, Benoit Boulanger, Corinne Félix, Jérôme Debray, David Jegouso, Bertrand Ménaert, Dmitry Roshchupkin, and Ichiro Shoji, *Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La*₃Ga_{5.5}Ta_{0.5}O₁₄, Optics Letters, Vol. **39**, Issue 13, pp. 4033-4036 (2014)
- 2. Elodie Boursier, Giedre Marija Archipovaite, Jean-Christophe Delagnes, Stéphane Petit, Guilmot Ernotte, Philippe Lassonde, Patricia Segonds, Benoît Boulanger, Yannick Petit, François Légaré, Dmitry Roshchupkin, and Eric Cormier, *Study of middle infrared difference frequency generation using a femtosecond laser source in LGT*, Optics Letters **42**(18), 3698-3701 (2017)

3. Визуализация акустических волновых полей в кристаллах методом сканирующей электронной микроскопии

YZ-срез LiNbO₃, V=3488 м/с, ∧=30 мкм, *f*=116 МГц

Черноголовка - 27 ноября 2019

 $F=\Lambda D(1-2A_d)/W^2$ F – параметр Френеля, W – апертура ВШП, D – расстояние от ВШП, A_d – параметр анизотропии подложки, ($A_d>0 \rightarrow F\sim$ см, $A_d<0 \rightarrow F\sim$ мм) YZ-срез LiNbO₃,: A_d =0.54 \rightarrow $F\sim$ 10 см

Взаимодействие двух ПАВ в YZ-срезе кристалла LiNbO₃

ПАВ в кристаллах семейства лангасита

Y-срез LGS (100). *f*=79.42 МГц; L=30 мкм

X-срез LGS (110). *f*=82.31 МГц; L=30 мкм; PFA=6.4°

Фокусировка ПАВ

Дифракция ПАВ на зонной пластинке Френеля

Схема дифракции

Фокусирующий ВШП

YZ-срез кристалла LiNbO₃: *f*=80 МГц, V=3488 м/с

Применение регулярных доменных структур в акустоэлектронике

Возбуждение ПАВ доменными структурами

Схема генерации ПАВ

d=75 мкм, Л=150 мкм, *f*=25.317 МГц, V=3800 м/с

Распространение ПАВ вдоль доменных границ

Схема распространения ПАВ вдоль РДС

Л=30 мкм, f=126.59 МГц, V=3800 м/с, АВ – доменная стенка

Л=32 мкм, f=107.5 МГц, V=3440 м/с

yxl/+50'-cpes La₃Ga₅SiO₁₄

Амплитудно-частотная характеристика QCM и распределение акустических волновых полей

yxl/+50'-cpes La₃Ga₅SiO₁₄

f=22.0247 МГц

f=22.1064 МГц

f=22.1529 МГц

Y-cpes LiTaO₃

f=15.3635 МГц

f=15.3839 МГц

4. Рентгеновские методы исследования акустических волновых полей

X-ray topography

Рентгеновская топограмма QCM на основе *ух∥-*36°-среза кристалла LGTA. Отражение (201), Θ_В=6.199°, *f*=6.1076 МГц

Визуализация ПАВ на источнике СИ с помощью эффекта Тальбота

Эффект Тальбота $Z_T=2\Lambda^2/\lambda$

Схема двухкристального рентгеновского дифрактометра. Сагиттальная геометрия дифракции.

Optical beamline ID06, ESRF Optical beamline KMC2, BESSY II

Акустически промодулированный Y-срез кристалла LGS. Отражение (100), Λ=10 мкм, λ=1 Å.

«Рентгеновская акустооптика» - управления рентгеновскими пучками

Распространение ПАВ в твердых телах приводит к синусоидальной модуляции кристаллической решетки, которая выступает в качестве дифракционной решетки для рентгеновского излучения, приводя к появлению дифракционных сателлитов вокруг брэгговского пика

Меридиональная схема дифракции рентгеновского излучения на ПАВ

 $\delta \Theta = d/\Lambda$

Дифракционные спектры кристалла La₃Ga₅SiO₁₄, *E*=11100 эВ, Λ=4 мкм, λ=1.1 Å, *h*~8 Å

Угловая расходимость между дифракционными сателлитами определяется длиной волны ПАВ, а интенсивность и количество дифракционных сателлитов амплитудой ПАВ.

Дифракция рентгеновского излучения на X-срезе кристалла $Ca_3TaGa_3Si_2O_{14}$ (CTGS), промодулированного ПАВ modulated by SAW with wavelength of Λ =4 µm. E=11 keV, λ =1.166 Å, reflection (110), Θ_B =7.7764°, f_0 =700 MHz, V=2800 m/s

Деформация кристаллической решетки поверхностной акустической волной. Линии (АА) соответствует положению максимума ПАВ внутри кристалла.

Зависимость интенсивности дифракционных сателлитов от амплитуды ПАВ (амплитуды входного сигнала на ВШП).

X-ray diffraction by acoustically modulated La₃Ga₅SiO₁₄ crystal near K-edge of Ga

X-ray diffraction by acoustically modulated Y-cut of an LGS crystal: (a)-(c) rocking curve measured at X-ray energy of 10300 eV, 10400 eV, and 10500 eV, respectively.

Поверхностные и псевдоповерхностные акустические волны, Z-срез кристалла LGS, X+30°, Λ =6 мкм, f_{SAW} = 416 МГц, f_{PSAW} = 496 МГц

0.02

2

Черноголовка - 27 ноября 2019

Акустические свойства кристаллов LiNbO₃ и LiTaO₃

Materials	V _{SAW} (m/s)	$K^{2}_{SAW}(\%)$	V _{PSAW} (m/s)	$K^{2}_{SAW}(\%)$
128° LiNbO ₃ , (104)	3980	5.4		
YZ LiNbO ₃ , (300)	3488	4.42		
41° LiNbO ₃ , (012)	3641	0.22	4749	15.56
64° LiNbO ₃ , (018)	3680	0.029	4690	10.25
112° LiTaO ₃ , (110)	3300	0.92		
36° LiTaO ₃ , (012)	3124	0.05	4224	5.52

[1] Kazuhiko Yamanouchi, Masao Takeuchi, Applications of Piezoelectric Leaky Surface Waves, 1990 Ultrasonic Symposium, pp. 11-18.

[2] Donghai Qiao, Wen Liu, Peter M. Smith, General Green's Functions for SAW Devices Analysis, *IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control*, Vol. 46, No. 5, 1999, pp. 1242-1253.

Material	V _{SAW} (m/s)	K ² _{SAW} (%)
128° LiNbO ₃ , (104)	3980	5.4

Reflection (104), *d*=2.739 Å. SAW: f_0 =989 MHz, Λ =4 μ m

Rocking curve, U=10 V, h~2.39 Å

Material	V _{SAW} (m/s)	K² _{SAW} (%)	V _{PSAW} (m/s)	K² _{SAW} (%)
41° LiNbO ₃ , (012)	3641	0.22	4749	15.56

Reflection (012), *d*=3.754 Å. SAW: f_0 =910 MHz, Λ =4 μ m

Material	V _{SAW} (m/s)	K ² _{SAW} (%)
112° LiTaO ₃ , (110)	3300	0.92

Reflection (110), *d*=2.577 Å. SAW: f_0 =824 MHz, Λ =4 μ m

Rocking curve, U=2 V, h~2.87 Å

Material	V _{SAW} (m/s)	K² _{SAW} (%)	V _{PSAW} (m/s)	K ² _{SAW} (%)
36° LiTaO ₃ , (012)	3124	0.05	4224	5.52

Reflection (012), d=3.745 Å. SAW: f_0 =795 MHz, Λ =4 μ m

Rocking curve, U=10 V, h~5.36 Å

Schemes of the SAW and PSAW propagation in crystals

SAW: f_0 =795 MHz, Λ =4 μ m, U=5 V

PSAW: f_0 =885 MHz, Λ =4 μ m, U=5 V

Акустооптический модулятор рентгеновского и синхротронного излучения

Высокоскоростной селектор рентгеновских импульсов

BESSY II: hybrid mode

Схема ВЧ акустооптического модулятора рентгеновского излучения в саггитальной геометрии дифракции

BESSY II: single bunch mode

синхротронного излучения на источнике синхротронного излучения DIAMAND

Выделение импульсов синхротронного излучения с длительностью 5 пс

5. Дифракция нейтронов на акустически промодулированных кристаллах

Схема дифракции нейтронов на ПАВ

20-0 карта распределения дифрагированных нейтронов. УХН: λ =4.3 Å. ПАВ: 100 мкм.

Направления волновых векторов ПАВ и нейтронов совпадают

Черноголовка - 27 ноября 2019

Волновые вектора ПАВ и нейтронов имеют встречно направление

Дифракция на стоячей ПАВ

6. Датчики UV-излучения

Применение QCM микровесов:

- контроль толщины тугоплавких пленок;
- контроль толщины эпитаксиальных пленок;
- мониторинг высокотемпературных процессов;
- контроль концентрации водорода на атомных электростанциях.

Наностержни ZnO

S21 характеристика QCM ZnO + $hv \rightarrow$ Zn + O₂ (десорбция кислорода с поверхности)

Высокотемпературный беспроводной сенсор на основе ПАВ-резонаторов (-90 °C \div 1000 °C, LGS: La₃Ga₅SiO₁₄)

Авиадвигатели

Корпус: LGS

Ir-ВШП (∧=5.948 мкм)

АЧХ ПАВ-резонатора

7. Акустостимулированный транспорт носителей заряда в графене

ПАВ: (a) СЭМ, (b) графеновый коллектор тока. *YZ*-срез кристалла LiNbO₃, Л=60 мкм, *f*=58.13 МГц.

EBIC, распределение зарядов на поверхности кристалла: (a) 2D карта распределение зарядов, (b) EBIC контраст распределения зарядов.

Roshchupkin D., Ortega L., Zizak I., Plotitcyna O., Matveev V., Kononenko O., Emelin E., Erko A., Tynyshtykbayev K., Irzhak D., Insepov Z. / Surface acoustic wave propagation in graphene film // Journal of Applied Physics. – 2015. – V. 118. - № 10. - Art. 104901.

СЭМ изображение пленки графена на кристалле ниобата лития

Изменение сопротивления пленки графена при освещении УФ излучением без ПАВ (кривые – 1) и при прохождении ПАВ (кривые – 2). Графики (а) и (b) отличаются полярностью приложенного к графену электрического напряжения

8. Микрофлюидика

Схема устройства на ПАВ.

Амплитудно-частотная характеристика

Фильтрация воды в графене

SAW-based atomizer chip

- Исследование плазмонного резонанса, акусто-плазмонного взаимодействия
- Исследование возбуждения и распространения поляронов
- Исследование акустических фононов
- Фононные кристаллы
- Сегнетоэлектрические доменные структуры
- Сегнетоэластики

Спасибо за внимание! Спасибо за внимание!