Kotelnikov Institute of Radioengineering and Electronics of RAS

АКУСТОЭЛЕКТРОННО-СПИНТРОННЫЕ УСТРОЙСТВА ГЕНЕРАЦИИ И ПРИЕМА ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ

іфти

^{1,2}П.А. Попов, ^{1,3}<u>А.Р. Сафин</u>, ^{1,2}С.А. Никитов,

¹Институт радиотехники и электроники им. В.А. Котельникова РАН

²Московский физико-технический институт (государственный университет)

³Национальный исследовательский университет «МЭИ»

СОДЕРЖАНИЕ

- МОТИВАЦИЯ
- ОСНОВЫ СПИНТРОНИКИ И СТРЕЙНТРОНИКИ
- Эффекты GMR, TMR, STT, SOT, Spin-Pumping
- Магнитоэлектрические эффекты
- Магнонная стрейнтроника
- АНТИФЕРРОМАГНИТНЫЕ ОСЦИЛЛЯТОРЫ, ДЕТЕКТОРЫ И ТЕРАГЕРЦОВАЯ СПИНТРОНИКА
- Материалы для АФМ-спинтроники
- > Автогенераторы. Осцилляторы с внешним возбуждением
- Детекторы терагерцовых волн на АФМ
- У Использование упругих напряжений для изменения пороговых токов и частоты колебаний АФМ устройств
- ЗАКЛЮЧЕНИЕ

МОТИВАЦИЯ

 Нехватка методов и устройств для приёма и генерации терагерцового излучения (THz gap problem)

ФУНКЦИОНАЛЬНАЯ ЭЛЕКТРОНИКА

пьезополупровод

ники и др.

	-				
Название	Среда передачи	Носители	Характерная длина волны	Частоты	Недостатки
Электроника	Металл, полупроводник	Электроны , дырки	2,42·10 ⁻⁶ мкм	ΓΓц, ΤΓц	Омические потери, топология межсоединений
Фотоника	диэлектрик	Фотоны, ЭМВ	0.5-10 мкм	40-700 ТГц	Управляемость, масштабируемость
Плазмоника	Диэлектрик- металл	Плазмоны	0.1-1 мкм	ТГц	Затухание, скин-эффект
Спинтроника	Магнетик-металл- диэлектрик	Электроны , спиновые волны	2,42·10 ⁻⁶ мкм 0.1-∞ мкм	ГГц	Повторяемость
Магноника	Ферромагнетики, Антиферромагне- тики, слоистые магнитные структуры	Магноны	0.1-∞ мкм	до 100 ГГц, ТГц	Необходимо внешнее магнитное поле для ФМ, повторяемость
Акустоэлектроника	Пьезоэлектрики,	Фононы	мм	МГц,	Диапазон частот, высокие

единицы

ΓГц

потери при

распространении

ФИЗИЧЕСКИЕ ЭФФЕКТЫ СТРЕЙНТРОНИКИ

1,2 – пьезомагнитный эф-т и магнитострикция
3,4 – пьезоэлектрический эф-т и электрострикция
5,6 – магнитоэлектрический (лин и нелин по М)
7,8 – флексомагнитные эф-ты (прямой и обратный)
9,10 – флексоэлектрич. эф-ты (прямой и обратный)
11,12 – флексомагнитоэлектрич. эф-ты (прям. и обратн.)

Бухараев А.А. и др., УФН. 2018.

ЭЛЕКТРОНИКА и СПИНТРОНИКА

Заряд

Спин

Основана на переносе <u>заряда</u> носителей электрического тока.

Основана на переносе собственного магнитного момента - <u>спина</u> носителей электрического тока.

Спинтроника

Электроника _____

В немагнитном проводнике электроны рассеиваются независимо от направления спина. От среднего количества рассеяния электронов зависит электрическое сопротивление проводника.

В ферромагнитном проводнике электроны рассеиваются по-разному в зависимости от направления спина электронов. Например, электроны со спином вверх рассеиваются сильнее, чем со спином вниз.

ГИГАНТСКОЕ МАГНИТОСОПРОТИВЛЕНИЕ

Ферромагнитные слои с противоположными направлениями намагниченностей слоев останавливают электроны обоих направлений спина.

плотность записи информации

ЭФФЕКТ ПЕРЕНОСА СПИНА

Уравнение Ландау-Лифшица-Гильберта (для намагниченности свободного слоя)

$$\frac{d\mathbf{M}}{dt} = \left[\gamma \left[\mathbf{H}_{eff} \times \mathbf{M} \right] + \frac{\alpha}{M_0} \left[\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right] + \frac{\alpha_I}{M_0} \left[\mathbf{M} \times \left[\mathbf{M} \times \mathbf{p} \right] \right] \right]$$

$$\mathbf{\Pi} \mathbf{p} \mathbf{e} \mathbf{q} \mathbf{e} \mathbf{c} \mathbf{u} \mathbf{g}$$

$$\mathbf{n} \mathbf{p} \mathbf{e} \mathbf{q} \mathbf{e} \mathbf{c} \mathbf{u} \mathbf{g}$$

$$\mathbf{n} \mathbf{p} \mathbf{e} \mathbf{q} \mathbf{e} \mathbf{c} \mathbf{u} \mathbf{g}$$

$$\mathbf{n} \mathbf{p} \mathbf{e} \mathbf{q} \mathbf{e} \mathbf{c} \mathbf{u} \mathbf{g}$$

<u>момента (spin torque)</u>

СПИНОВЫЙ ЭФФЕКТ ХОЛЛА И СПИНОВАЯ НАКАЧКА

АС и DC сигналы за счет обратного спинового эффекта Холла Wei, D., et al., 2014, Nat. Commun. 5, 3768. Normal metal Charge current Spin current

Эффект возникает из-за анизотропии рассеяния электронов с разными направлениями спинов на примесях немагнитного металла вследствие спинорбитального взаимодействия.

Обратный спиновый эффект Холла. При пропускании спин-поляризованного тока регистрируют напряжение ~10 нВ.

Дьяконов М.И., Перель В.И. 1971. Письма в ЖЭТФ. 13(11). С. 657-660.

ОСЦИЛЛЯТОРЫ НА ОСНОВЕ СПИНОВОГО ЭФФЕКТА ХОЛЛА

Рис.1. Конструкция СХНО, управляемого током

Рис.2. Зависимость частоты колебаний от постоянного тока

M. Dvornik, A. A. Awad, and J. Åkerman Phys. Rev. Appl. **9**, 014017 (2018)

ЛОКАЛЬНАЯ СВЯЗЬ БОЛЬШИХ МАССИВОВ СХНО

Линейка из 21 осциллятора

Решетка из 64 и 100 осцилляторов

M. Zahedinejad, et al. ArXiv:1812.09630v1.

ЛУЧШИЕ ПОКАЗАТЕЛИ ПО МОЩНОСТИ И ШИРИНЕ СПЕКТРАЛЬНОЙ ЛИНИИ ДЛЯ ОСЦИЛЛЯТОРОВ

МАГНОНИКА

• Резонаторы

Примеры реализации 1D-магнонных кристаллов

МАГНОННАЯ СТРЕЙНТРОНИКА

АФМ & ТГЦ спинтроника

Электрическое переключение АФМ полупроводников

P. Wadley, et al. Science 2016

T. Kampfrath, et al. Nat.Phot. 2011

16

АФМ Спин-Холл Наноосциллятор

17

АФМ ДИНАМИКА ПОД ДЕЙСТВИЕМ ТОКА

d**¢**∕dt [a.u.]

Критические токи:

ВНЕШНЯЯ СИНХРОНИЗАЦИЯ

Field-like Neel spin-orbit torque (NSOT):

 $\tau_{\scriptscriptstyle NSOT} \sim \mathbf{l} \times \mathbf{n} \times \mathbf{j}$

Was discovered in metallic AFMs with broken inversion symmetry

Narrow-band tunable THz detector in antiferromagnets via Néel spin-orbit torque and spin-transfer torque

O. Gomonay,^{1,2} T. Jungwirth,^{3,4} and J. Sinova^{1,3}

¹Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany ²National Technical University of Ukraine "KPI", 03056, Kyiv, Ukraine ³Institute of Physics ASCR, w.ii., Cukrovarnicka 10, 162 53 Praha 6 Czech Republic ⁴School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

O. Gomonay, et al. PRB. 2018.

Anti-damping-like torque:

 $\tau_{STT} \sim j(\mathbf{l} \times \mathbf{p} \times \mathbf{l})$

p_{ac} along Hard-axis

p_{ac} || **p**_{dc} || **H**_{HA}

Easy plane

Efficient injection-locking via parallel pumping

R. Khymyn, et al. INTERMAG. 2017.

Взаимная синхронизация АФМО

ГЕНЕРАТОРЫ С ВНЕШНИМ ВОЗБУЖДЕНИЕМ

СТРУКТУРА ДЕТЕКТОРА

Построение наноразмерного, резонансного, перестраиваемого током детектора ТГц электромагнитных волн.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

ВЫПРЯМЛЕННОЕ НАПРЯЖЕНИЕ

ВЫПРЯМЛЕННОЕ НАПРЯЖЕНИЕ

Изменение угла внешнего магнитного поля позволяет добиваться

увеличения интенсивности мод

МОЖНО добиваться увеличения мощности в резонансе путем подбора величины и направления поля подмагничивания!

МАГНИТОУПРУГОЕ ВЗАИМОДЕЙСТВИЕ

Магнитоупругая связь

МАГНИТОУПРУГОЕ ВЗАИМОДЕЙСТВИЕ

Вызванные явления:

1. Пьезомагнитные эффекты

2. Магнитоупругие волны

ИССЛЕДУЕМАЯ СТРУКТУРА

МАГНИТНАЯ ДИНАМИКА

Уравнение динамики для исследуемой системы

$$\frac{\ddot{\phi}}{\omega_{ex}} + \alpha \dot{\phi} + \omega_e \frac{\sin 2\phi}{2} - \sigma j = 0$$

 ϕ - азимутальный угол намагниченности

- $\omega_{ex} =$ гиромагнитное отношение × обменное поле
- α параметр затухания
- ω_e = гиромагнитное отношение × поле анизотропии
- σ коэффициент вклада в динамику от тока
- j плотность тока в платине

Магнитоупругое взаимодействие позволяет управлять величиной ω_e

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

График зависимости частоты колебаний от поля Epz при разных

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

Зависимость порогового тока (левая ось) и амплитуды генерации (правая ось) от поля Ерг на пьезоэлектрике

ЗАКЛЮЧЕНИЕ

- Использование упругих деформаций позволяет менять эффективное поле анизотропии антиферромагнетика, приводя к контролю частоты колебаний АФМ осцилляторов и детекторов терагерцового диапазона частот.
- Подстройка частоты колебаний детектора терагерцовых колебаний может осуществляться изменением подведенного напряжения на пьезоэлектрик (без использования постоянного спинполяризованного тока высокой плотности).

СПАСИБО ЗА ВНИМАНИЕ

2. Связь поля и анизотропии

1. Пьезоэлектрический эффект $e_{ij}^{PZ} = d_{kij}E_k$

2. Идеальный акустический контакт на границе PZ-AFM, Свободная граница Pt-AFM и закон Гука :

$$e_{ij}^{IF} = P_{ik}e_{kl}^{PZ}P_{lj} = P_{ik}e_{kl}P_{lj}$$
,
 $\sigma_{ij}n_i = 0$,
 $\sigma_{ij} = C_{ijkl}e_{kl}$
 P_{ij} – проектор на границу РZ-АFM
 $\bullet e_{ij} = G_{ijkl}d_{mkl}E_m$ - уравнение деформации в
антиферромагнетике

 G_{ijkl} зависит от взаимной ориентации пьезоэлектрика и антиферромагнетика и от их материальных констант.

2. Связь поля и анизотропии

Индуцированное магнитоупругое поле:

Из выражения для магнитоупругой энергии

 $E^{ME} = R_{ijkl} M_i M_j e_{kl}$

Магнитоупругое поле можно найти как

$$B_i^{ME} = -\frac{\partial E^{ME}}{\partial M_i} = -2R_{ijkl}M_je_{kl}$$
$$= -2R_{ijkl}M_jG_{klmn}d_{smn}E_s = K_{ijs}M_jE_s$$

Вид собственного поля анизотропии:

 $B^e_i = -\frac{B^e}{M^s} n^e_i n^e_j M_j$

Возможно так подобрать K_{ijs} , что B_i^{ME} будет сонаправлен с B_i^e ,