

Исследование материалов для создания акустооптических устройств среднего ИК диапазона

Волошинов В.Б., Балакший В.И., <u>Манцевич</u>

<u>С.Н.,</u> Поликарпова Н.В., Дьяконов Е.А., Купрейчик М.И., Пороховниченко Д.Л., Хоркин В.С.

МГУ им. М.В. Ломоносова Физический факультет

Основные направления исследований группы акустооптики и оптической обработки информации

- Распространение акустических волн и пучков в средах с сильной акустической анизотропией
- Акустооптическое взаимодействие в акустических полях с периодической фазовой модуляцией
- Исследование материалов для создания акустооптических устройств в УФ, среднем и дальнем ИК диапазонах
- Исследование материалов и особенностей акустооптической дифракции в терагерцовом диапазоне
- Изучение акустооптического взаимодействия в оптически двуосных кристаллах
- Исследование функционирования акустооптических систем с оптоэлектронной обратной связью
- Изучение влияния температуры на работу акустооптических устройств
- Визуализация фазовых объектов

Акустооптическое взаимодействие в среднем и дальнем ИК диапазонах

Проблема: расширение диапазона работы акустооптических устройств в длинноволновом направлении

Актуальные задачи:

- поиск АО материалов, прозрачных на длинах волн больших 10 мкм
- изучение акустических и акустооптических свойств этих материалов
- разработка АО устройств для данного диапазона

Работа с ИК излучением в акустооптических устройствах

ОСНОВНАЯ ПРОБЛЕМА – ЭФФЕКТИВНОСТЬ ДИФРАКЦИИ

$$I = \left(\frac{\pi l}{\lambda}\right)^2 \frac{PM}{2S}$$

При увеличении длины волны света эффективность дифракции падает:

(по сравнению с эффективностью дифракции на длине волны 0.63 мкм)

10 мкм – в 250 раз 30 мкм – в 2500 раз

Материал не только прозрачный, но и с достаточно высоким АО качеством

Свойства некоторых кристаллов для ИК акустооптики

АО материал	Диапазон прозрачности, мкм	М x 10 ⁻¹⁵ с ³ /кг продольная волна	М x 10 ⁻¹⁵ с ³ /кг сдвиговая волна	
Si	1.510	6	24	
Ge	1.522	190	290	
KRS-5 (TIBr-TII)	0.5345	1150	1200	
KRS-6 (TICI-TIBr)	0.430	715	880	
PbBr ₂	0.3630	550	n/a	
Hg ₂ Cl ₂	0.3520	540	640	
Hg ₂ Br ₂	0.4030	n/a	2600	
Hg ₂ I ₂	0.4540	максимальное	качество 3200	
Inl	0.6250	1100	n/a	
Те	4.020.0	?	?	
Tl ₃ AsSe ₃	1.117	максимальное качество 2900		
Tl ₃ AsS ₄	0.612	?	?	

Достаточно большое оптическое поглощение и оптическая активность (12° мм⁻¹)

Dixon R.W., Chester A.N. "An acoustic light modulator for 10.6 μm" *Appl. Phys. Lett.* 1966 **9**Diakonov A.M., Ilisavsky Y.V. and Farbstein I.I. "Efficient acousto-optic modulator on base of tellurium " *Sov. Tech.Phys. Lett.* 1977 **3**Loferski J.J. "Infrared optical properties of single crystals of tellurium" *Phys. Rev.* 1954 **93**

акустические свойства

Класс 32, тригональная сингония $c_{11} = 37.6$ $c_{12} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} & 0 & 0 \\ c_{12} & c_{11} & c_{13} & -c_{14} & 0 & 0 \\ c_{13} & c_{13} & c_{33} & 0 & 0 & 0 \\ c_{14} & -c_{14} & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & c_{14} \\ 0 & 0 & 0 & 0 & c_{14} & c_{66} \end{pmatrix} \times 10^{10} \text{ дин см}^2$ $c_{11} = 37.6$ $c_{12} = 9.4$ $c_{13} = 28.8$ $c_{14} = 14.3$ $c_{33} = 78.5$ $c_{44} = 35.4$

Uchida N. and Niizeki N. "Acoustooptic deflection materials and techniques " *Proc. IEEE* 1973 **61** 1073–92

Gorley P., Kushnir I. and Shenderovsky V. "Acoustic and piezoelectric properties of tellurium single crystals " *Ukr. J. Phys.* 1989 **34** 102–9

скорость, м/с
V _{ss} = 1050
V _{FS} = 2610
V _L = 2450
V _{SS} = 2380
V _L = 3540

акустические свойства

направление	скорость, м/с
Х	V _{SS} = 1050
Х	V _{FS} = 2610
Х	V _L = 2450

акустические свойства

направление	скорость, м/с
116.5°	V _{SS} = 1050
Y	V _{ss} = 1500
Y	V _{QS} = 1800
Y	V _{QL} = 2800

акустооптические свойства
$$p_{11} = 0.164$$
 $p_{12} = 0.138$ $p_{12} = p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad 0 \quad 0$ $p_{12} = p_{11} \quad p_{13} \quad -p_{14} \quad 0 \quad 0$ $p_{31} \quad p_{31} \quad p_{11} \quad 0 \quad 0 \quad 0$ $p_{41} \quad -p_{41} \quad 0 \quad p_{44} \quad 0 \quad 0$ $0 \quad 0 \quad 0 \quad 0 \quad p_{44} \quad p_{41}$ $0 \quad 0 \quad 0 \quad 0 \quad p_{14} \quad p_{66}$

Souilhac D., Billeret D. and Gundjian A. "Photoelastic tensor of tellurium" *Appl. Opt.* 1989 **28** 3993–6

акустооптические свойства

Плоскость YZ наиболее предпочтительна для создания AO устройств, в том числе фильтров

Акустооптическая дифракция

Acoustic propagation angle θ_a (deg)	Acoustic walkoff angle α (deg)	Acoustic phase velocity $V (10^5 \text{ cm s}^{-1})$	Optic polar angle θ_0 (deg)	Bragg angle of incidence $\theta_{\rm B}$ (deg)	Angle of diffraction θ_d (deg)	Figure of merit $M_2 (10^{-12} \text{ s}^3 \text{ kg}^{-1})$	Acoustic frequency f (MHz)
107	37	1.13	65	48	34.7	130	175
105	40	1.16	51	36	21.1	95	166
103	43	1.19	43	30	15.7	70	154
100	45	1.26	34	24	12	45	130
98	46	1.30	27	19	9	28	110
93	46	1.45	11	7	3	3	47
80	41	1.70	-34	-23	-11	11	177

Максимальное АО качество в плоскости YZ достигается для сдвиговой волны, распространяющейся под углом 108°;

M=160 000 х 10⁻¹⁵ с³/кг;

световая волна распространяется под углом 96°

Этот вариант не применим из-за большого поглощения света

Gupta N., Voloshinov V.B., Knyazev G.A. and Kulakova L.A. "Optical transmission of single crystal tellurium for application in acousto-optic cells" *J. Opt.* **13** (2008) 055702 Gupta N., Voloshinov V.B., Knyazev G.A. and Kulakova L.A. "Tunable wide-angle acousto-optic filter in single-crystal tellurium" *J. Opt.* **14** (2012) 035502

АО фильтр

Получение изображений

$$R = \frac{\lambda}{\delta\lambda} = 83$$

Gupta N., Voloshinov V.B., Knyazev G.A. and Kulakova L.A. "Tunable wide-angle acousto-optic filter in single-crystal tellurium" *J. Opt.* **14** (2012) 035502

Вероятно коэффициенты p_{ii} определены неверно, скорее всего p_{41} !

V.B.Voloshinov, V.S.Khorkin, L.A.Kulakova and N.Gupta, J. Phys. Com., 2017, 1, 025006

Уточнение константы p₄₁

$$p_{41} = 0.16 \pm 0.03$$

$$p_{41} = 0.28$$

Исследование АО свойств теллуровых стекол

Исследованы физические свойства стекол германия-селена-теллура. Стекла были получены в физико-техническом институте им. Иоффе

 $Ge_{33}Se_{33}Te_{33}\\Ge_{30}Se_{30}Te_{40}\\Ge_{30}Se_{25}Te_{45}\\Ge_{30}Se_{20}Te_{50}\\Ge_{27}Se_{18}Te_{55}\\Ge_{25}Se_{15}Te_{60}\\Ge_{19}Se_{9}Te_{72}\\Ge_{10}Se_{40}Te_{50}\\Ge_{10}Se_{50}Te_{40}\\Ge_{10}Se_{60}Te_{30}$

 $Si_{18.7}Se_{6.7}Te_{74.6} \\Si_{19.2}Se_{4}Te_{76.8} \\Si_{19.7}Se_{1.6}Te_{78.7} \\Si_{20}Te_{80}*$

 $Ge_{22}Se_{5}S_{5}Te_{68}$ $Ge_{22}Se_{7}S_{3}Te_{68}$ $Ge_{20}Se_{7}S_{3}Te_{70}$ $Ge_{22}Se_{3}S_{2}Te_{70}$

V.B. Voloshinov, N. Gupta, L.A. Kulakova, V.S. Khorkin, B.T. Melekh and G.A. Knyazev, *Journal of Optics*, 2016, **18**, p. 025402.

Исследование АО свойств теллуровых стекол

Исследование АО свойств теллуровых стекол

Стекло	Плотность <i>р</i> , г/см ³	Скорость v, 10 ⁵ см/с	с ₁₁ , 10 ¹⁰ дин/см	$M_{2^{\perp}}$, 10 ⁻¹⁸ c ³ /Γ	$\begin{array}{c} \mathrm{M_{2\parallel},10^{-18}}\\ \mathrm{c^{3/\Gamma}} \end{array}$
Ge ₃₃ Se ₃₃ Te ₃₃	4.92 ± 0.15	2.23 ± 0.02	24.5 ± 0.8	290 ± 60	390 ± 130
Ge ₃₀ Se ₃₀ Te ₄₀	5.02 ± 0.09	2.20 ± 0.02	24.1 ± 0.4	240± 40	420 ± 100
Ge ₃₀ Se ₂₅ Te ₄₅	5.0 ± 0.1	2.20 ± 0.03	24.2 ± 0.7	240 ± 40	440 ± 100
Ge ₂₅ Se ₁₅ Te ₆₀	5.23 ± 0.07	2.05 ± 0.01	22.0 ± 0.3	700 ± 160	1330 ± 300
Si ₂₀ Te ₈₀	5.06 ± 0.06	2.00 ± 0.05	23.0 ± 0.5	770 ± 150	1150 ± 400

V.B. Voloshinov, N. Gupta, L.A. Kulakova, V.S. Khorkin, B.T. Melekh and G.A. Knyazev, *Journal of Optics*, 2016, **18**, p. 025402.

KRS (*Kristalle aus dem Schmelzfluss*) – семейство синтетических кристаллов, разработанных в Германии в начале 40х годов 20 в. для изготовления ИК оптических элементов.

Кристалл	KRS-5	KRS-6	KRS-11	KRS-13	KRS-15
Состав	TlBr(58%)/	TlBr(67%)/	AgBr(50%)/	AgBr(75%)/	TlBr(20%)/
	Tll(42%)	TlCl(38%)	AgCl(50%)	AgCl(25%)	TlCl(80%)

- синтетические кристаллы
- твердые растворы галогенидов таллия и серебра
- кубическая решетка, класс m3m
- легко поддаются обработке
- нерастворимы в воде не гигроскопичны
- KRS-5 за счет большего показателя преломления обладает лучшими AO свойствами чем KRS-6

Общие свойства кубического кристалла KRS-5 (m3m)

диапазон прозрачности λ = 0.55-50 µm ρ = 7370 кг/м³ - плотность материала, n = 2.57 (λ = 0.63 µm), n = 2.36 (λ = 10.6 µm) - показатель преломления

$$c_{ij} = \begin{pmatrix} c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & c_{44} \end{pmatrix}, \quad p_{ij} = \begin{pmatrix} p_{11} & p_{12} & p_{12} & 0 & 0 & 0 \\ p_{12} & p_{11} & p_{12} & 0 & 0 & 0 \\ p_{12} & p_{12} & p_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & p_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{44} & 0 \\ 0 & 0 & 0 & 0 & p_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & p_{44} \end{pmatrix}$$
$$c_{II} = 3.31 \cdot 10^{10} \,\mathrm{Ha}, \quad c_{I2} = 1.32 \cdot 10^{10} \,\mathrm{Ha} \\ c_{44} = 0.579 \cdot 10^{10} \,\mathrm{Ha}^{*} \qquad \qquad p_{II} = 0.213, \quad p_{I2} = 0.144 \\ p_{44} = 0.149 \end{pmatrix}$$

Mantsevich S.N. "Thallium bromide iodide crystal acoustic anisotropy examination " *Ultrasonics* 2017 **75** 91-97

Mantsevich S.N. "Thallium bromide iodide crystal acoustic anisotropy examination " *Ultrasonics* 2017 **75** 91-97

акустические свойства акустическая анизотропия, медленная мода

акустические свойства

Направление распространения	Акустическая мода	Скорость v, м/с	Поляризация акустической моды	Литература* v, м/с
[100]	L	2110	[100]	2000
	S	886	[010]	900
	S	886	[001]	900
[110]	L	1980	[110]	_
	FS	1160		1200
	SS	886	[001]	900
[111]	L	1930	[111]	1920
	FS	1080		-
	SS	1080		-

V. B. Voloshinov, D. L. Porokhovnichenko, E. A. Dyakonov, *Optical Engineering*, 2017, **56**, 087102

акустооптические свойства

	Акустическая мода	Направление, поляризация света	p _{eff}	<i>M</i> ₂ , 10 ⁻¹⁵ c ³ Γ ⁻¹
[100]	L	[001], [100]	<i>P</i> ₁₁	200
		[001], [010]	<i>P</i> ₁₂	90
	S [010]	[001]	анизотр: р ₄₄	1250
	S [001]	[010]	анизотр: p ₄₄	1250
[110]	L	[001], [110]	$(p_{11}+p_{12}+2p_{44})/2$	540
		[001]	$(p_{11}+p_{12}-2p_{44})/2$	5
		[110]	<i>P</i> ₁₂	100
	FS	[001]	анизотр: (p ₁₁ - p ₁₂)/2	30
	SS		анизотр: p ₄₄	1250
[111]	L	[111]	$(p_{11}+2p_{12}+4p_{44})/3$	720
			$(p_{11}+2p_{12}-2p_{44})/3$	30

V. B. Voloshinov, D. L. Porokhovnichenko, E. A. Dyakonov, Optical Engineering, 2017, 56, 087102

наведенная оптическая анизотропия

Balakshy V.I., Zotov E.I., Parygin V.N. "Anisotropic diffraction of light in a medium with an induced anisotropy" *Sov. J. Quantum Electron.*, 1976 **6** p.1195

Зависимость угла Брэгга от частоты ультразвука при дифракции на сдвиговой акустической волне в кристалле KRS-5 на длинах волн 632, 800 и 1150 нм.

наведенная оптическая анизотропия

Зависимость угла Брэгга от частоты ультразвука при дифракции на сдвиговой акустической волне в кристалле KRS-5 на длине волны 632 нм. Р_{static} = 60 атм, S_{st} = 2·10⁻⁴

Исследование кристалла йодида индия

- выращен недавно
- ромбическая решетка
- легко поддается обработке
- гигроскопичен
- прозрачен в диапазоне 0.62-50мкм
- показатели преломления на данный момент не известны

акустические свойства

Параметры ультразвуковой волны			Компонента тензора	
Направление	Поляризация	Скорость, м/с	упругой жесткости	
Х	Х	2230±50	C ₁₁ = (2.65±0.15) X 10 ¹⁰ H/m ²	
Y	Y	1960±50	C ₂₂ = (2.04±0.15) X 10 ¹⁰ H/m ²	
Z	Z	2180±50	C ₃₃ = (2.53±0.15) X 10 ¹⁰ H/m ²	

Исследование кристалла йодида индия

акустооптические свойства

Ультразву волна	/ковая	Электромагнитное излучение		$M_2 imes 10^{15}, { m c}^3/{ m kr}$		$p_{_{ m b}\phi\phi}$	n
Направл	Поляр.	, Направл.	Поляр.	1,15 мкм	0,65 мкм		
•		Z		(2017) 1100 ± 200	(2019)		
X		У			1100 ± 100	$ _{p_{11}}$	
У	У	Z	X	120 ± 25		<i>p</i> ₁₂	n_x
Z	Z	у	X		300 ± 50	<i>p</i> ₁₃	
X	X	Z	у	90 ± 20		<i>p</i> ₂₁	
		Z		260 ± 50		2	_
У	У	x	y y		230 ± 20	P_{22}	n _y
Z	Z	x	y		80 ± 10	<i>p</i> ₂₃	
X	x	y	Z		110 ± 25	<i>p</i> ₃₁	
У	У	x	Z		110 ± 10	<i>p</i> ₃₂	n _z
Z	Z	X	Z		860 ± 80	<i>p</i> ₃₃	

Исследование кристалла бромида ртути

- •прозрачен в диапазоне 0.40...30 мкм
- угол сноса для медленной моды более 70°
- большая акустическая анизотропия
- показатели преломления и двулучепреломление больше чем у Hg₂Cl₂
- Минимальная скорость ультразвука 282 м/с
- Возможность создания широкоапертурного фильтра

Длина волны, мкм	n _o	n _e
0.42	2.305	2.703
0.63	2.12	2.98
1.06	2.07	2.80
10.6	2.03	2.70
30	2.033	2.700

Исследование кристалла Tl₃AsS₄

- ромбическая симметрия, класс mmm
- прозрачен в диапазоне 0.6...12 мкм
- оптически двуосный
- в главных плоскостях дифракция только на сдвиговой акустической волне
- углы сноса не более 35°
- акустическая анизотропия средняя

 $V^{1}, 10^{-5} s/m$

Длина волны, мкм	n _x	n _y	n _z	ψ
0.633	2.829	2.825	2.774	15.43(XZ)
1.553	2.603	2.599	2.566	19.01(XZ)
3.38	2.567	2.569	2.525	12.16(XZ)
5.3	2.556	2.560	2.513	16.74(XZ)
10.6	2.542	2.541	2.498	8.55(XZ)

Исследование кристалла Tl₃AsS₄

Квазиколлинеарная дифракция

Спасибо за внимание!