НАУЧНЫЙ СЕМИНАР по теме: «Системы металлизации»

Тепловая деградация систем металлизации полупроводниковых приборов

А.А. Скворцов

SkvortsovAA2009@yandex.ru

- 1. Системы металлизации и контакты при импульсном токовом воздействии. Динамика нагрева многослойных структур в условиях теплового удара.
- 2. Деградационные процессы в системах металлизации и на межфазных границах металл-полупроводник: основные механизмы.
- 3. Дефектообразование в кремнии в условиях тепловых ударов на его поверхности.

Методика формирования тестовых структур

- 1. Напыление подслоев (SiO₂, Si₃N₄)
- 2. Напыление пленок А1

Режимы напыления: $V_{Al} = 0,075 \frac{\text{мкм}}{\text{мин}} = 75 \frac{\text{нм}}{\text{мин}}$, T=150°C, P_{ocr}=8·10⁻⁴Па Толщина пленок: d_{Al}=3-5 мкм, d_{SiO2}=0,3 мкм, d_{Si3N4}=0,1 мкм

Рис. 3. Фотографии 76 мм кремниевой пластины (а) с напыленной пленкой алюминия (b), рабочего фотошаблона (c) и кремниевой пластины после формирования структур (d).

Тестовые структуры

Рис.1. Тестовая структура Si-Al для исследования температурных режимов дорожек металлизации. А- Фотография текстовой структуры I – токовые, пронумерованные (1-12) – потенциальные контактные площадки.В- поперечное сечение структуры Al-SiO₂-Si

Рис.2. Вид тестовой
структуры по данным
работы
//Microelectronics Reliability.
51 (2011) 1127–1135.

ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС

Рис.5. Структурная схема установки для исследования тепловых режимов работы, дефектообразования и термостимулированных изгибных колебаний в полупроводниковых структурах при импульсных токовых воздействиях 1 – монокристаллическая кремниевая пластина 2 – тестируемая дорожка металлизации, 3 – пьезоэлектрический датчик для регистрации изгибных колебаний.

Измерительный комплекс

Рис. 1. СЭМ Jeol JSM7500

Рис.2. СЭМ Helios NanoLab 660

Рис. 4. Зондовая установка

Рис. 5. УЗ микросварка

Рис. 3. D8 DISCOVER Bruker AXS

Рис. 6. Оптическая микроскопия

Динамика нагрева многослойных структур в условиях теплового удара

Рис.1. Осциллограммы включения при прохождении прямоугольного импульса амплитудой $j=3\cdot10^{10}$ А/м² и длительностью 440 мкс, толщина Al h₁=5 мкм: 1-h₂=0; 2-Si₃N₄; h₂=0,1 мкм; 3-SiO₂; h₂=0,1 мкм.

Рис.2. Осциллограммы включения при пропускании одиночного импульса тока амплитудой длительностью 400 мкс и максимальным значением j_{max} и энергией W: 1 – 4·10¹⁰ A/м² и 2.7 мДж; 2 – 6·10¹⁰ A/м² и 7.0 мДж; 3 – 6·10¹⁰ A/м² и 15 мДж; 4 – 1·10¹¹ A/м² и 27 мДж; 5 – 12·10¹¹ A/м² и 47 мДж. Толщина пленки h₁=2 мкм. На вставке: форма токовых импульсов.

Рис. 1. Осциллограммы включения снятые с участка тестовой структуры системы Al-Si длиной 2,99 мм при пропускании линейно нарастающего импульса тока при: 1 $j_{max}=3,9\cdot10^{10}$ A/m², 2- 4,2·10¹⁰, 3- 4,5·10¹⁰, 4- 4,6·10¹⁰. Толщина пленки алюминия 5 мкм. На вставке: форма импульса с линейно нарастающим передним фронтом со скоростью изменения тока 1 – 4,67·10⁴ A/c, 2 – 5,79·10⁴, 3 – 6,00·10⁴.

длительностью 150 мкс.

Пунктир – форма токовых импульсов.

длительностью $\tau_0 = 150$ мкс и $\tau_c = 40$ мс Пунктир – форма токовых импульсов.

Осциллограмма – как «зеркало» развития необратимых процессов

Рис.1. Структура Al-Si

Рис.2. Вид осциллограмм включения при прохождении одиночного токового импульса *j* (A/м²): **1**- 4.5·10¹⁰ ; **2**- 5·10¹⁰; **3**-5.2·10¹⁰; **4**- 5.6·10¹⁰ и **5**- 5.8·10¹⁰.

10

Оплавление пленки металла на кремнии

a

Д

Рис.2. Фотографии фрагментов пленки А1 после оплавления

Оплавление пленки металла на кремнии с тонкой пленкой окисла

Рис.1.Фотографии фрагментов тестовой структуры после прохождения прямоугольного токового импульса тока длительностью 500 мкс и j=5.2·10¹⁰A/м²: а- структура Al-Si; б- структура Al-SiO₂-Si

Оплавление пленки металла на диэлектриках

Рис.1. Осциллограммы включения системы Si-Si₃N₄-Al (1) и Al-Si (2) при пропускании одиночного импульса тока амплитудой $j=6\cdot10^{10}$ A/м² и длительностью 680 мкс, $h_1=5$ мкм.

Рис.2. Фотографии разрушений структур: Си-Ситалл (сверху), Al-Si $_3N_4$ -Si (снизу).

Рис.1. Схема области безопасной работы контакта алюминий-кремний (зона **I.Solid** ограничена сверху штрих-пунктирной линией), построенной на основе осциллограмм включения. Мощность токового импульса не превышал 170 mJ.

Анализ процесса распространения расплавленной зоны

Рис. 1. Схема распространения оплавленных зон в алюминиевой металлической дорожке (а), экспериментальный образец (б). На фотографии- участки оплавления структуры после прохождения одиночного токового импульса амплитудой 7.10¹⁰ А/м² и длительностью 400 мкс, энергия импульса 64 мДж.

Зависимость длины оплавленной части дорожки металлизации *x*_l от времени т для импульса тока различной формы:

$$x = \frac{(\rho_{ol} - \rho_{os})\sqrt{a_1}}{S^2 H} \int_{0}^{\tau} I^2(\tau)\sqrt{\tau} d\tau$$
 (1)

Для прямоугольного импульса тока:

$$x(\tau) = \frac{(\rho_{ol} - \rho_{os})\sqrt{a_1}I_0^2}{S^2 H}\tau^{\frac{3}{2}}$$
(2)

Для импульса с линейно нарастающим фронтов:

$$x(\tau) = \frac{(\rho_{ol} - \rho_{os})\sqrt{a_1}}{S^2 H} k^2 \frac{2}{7} \tau^{\frac{7}{2}}$$
(3)

 ρ_{ol} , ρ_{os} удельное сопротивление жидкого и твердого алюминия,

- $S=b\cdot h$ -площадь поперечного сечения,
- а₁-температуропроводность алюминия,
- τ- время оплавления,
- *H* удельная теплота плавления Al.

К анализу скорости распространения расплавленной зоны

Рис.1. Зависимость длины оплавленной зоны от времени оплавления τ для систем: 1- Al-Si, 2- Al-SiO₂-Si.

Рис.2. Осциллограммы U(t), снятые с двух участков тестовой структуры системы Si-Al при прохождении различных токовоых импульсов; $\Delta \tau_1 = 25$ мкс, $\Delta \tau_2 = 23$ мкс

Контактные плавление в многослойных системах

Рис. 1. Осциллограммы включения при прохождении одиночного импульса тока через системы: Al-Si_a-Si (кривая 1), Al-Si (кривая 2), Al-Ge_a-Si (кривая 3). Длина структуры l=2.3 mm; h₁=5 μm :

1. j=8,5·10¹⁰ A/m²; h₂=0.5 μ m; τ =480 μ s;

2. j=8,4·10¹⁰ A/m²; h₂=0; τ =485 µs;

3. j=8,2·10¹⁰ A/m²; h₂=0.5 μ m; τ=500 μ s.

Штриховая линия - падение напряжения, снятое с выхода фотоумножителя в процессе прохождения токового импульса длительностью τ =480 μs и амплитудой j=8,5·10¹⁰ A/m² через систему Al-Si_a-Si. Зарегистрировано двухлучевым осциллографом одновременно с кривой 1.

Микроскопия систем металлизации

Рис. 1. РЭМ-изображения сколов структур Al-Si

Экспериментальное подтверждение механизма контактного плавления

Рис.1. РЭМизображение участков тестовых структур: а – структура Al-Si; бструктура Al-SiO₂-Si

Результаты расчетов

Рис.1. Расчетная (по уравнению 1) зависимость температуры на поверхности кремниевой пластины после пропускания импульса тока длительностью 130 мкс и амплитудой: **1**– 4.9·10¹⁰ A/м² (I=11 A); **2**– 6.2·10¹⁰ A/м² (I=14 A); **3**–7.1·10¹⁰ A/м² (I=16 A); **3**–9.8·10¹⁰ A/м² (I=22 A).

Пунктирные линии - границы дорожки металлизации

$$\frac{\partial T(y,\tau)}{\partial y} = \frac{I^2 R}{2\pi\lambda lb} \left[E_1 \left(\frac{(b/2 - y)^2}{4a\tau} \right) - E_1 \left(\frac{(b/2 + y)^2}{4a\tau} \right) \right]$$

Рис. 2. Фотография фрагмента оплавления тестовой структуры (**a**) и расчетная зависимость температуры на поверхности кремниевой пластины (**б**) после прохождения прямоугольного импульса тока j=7·10¹⁰ A/м² и τ=500 мкс. Ширина дорожки 75 мкм.

Рис. 2.6. температурный профиль T₁(x) (а) и рисунок двухступенчатой структуры алюминиевой пленки на перегибе (б): 1-пленка алюминия (h₁=1.0 мкм); 2-слой аморфного кремния (h₂=0.2 мкм); 3-кремниевая пластина (h₃=480 мкм). На вставке фотография образца.

Дефектообразование в кремнии

Рис.1. Фрагмент напыленной алюминиевой пленки (1) толщиной 1 мкм и шириной 75 мкм и конфигурация возникающих дислокационных полупетель в монокристаллах кремния (2) после теплового удара, вызванного прохождением одиночного прямоугольного токового импульса длительностью 500 мкм и амплитудой 6·10¹⁰ A/м².

Рис. 2. Microstructure of Si, plastically deformed along [321] (RT. 5GPa) shown in the (111) plane, weak beam dark field, g= $\overline{2}20$, 5g excited. Dislocations with $\frac{1}{2}[\overline{1}10]$ Burgers vector are undissociated and lie along the screw direction and the [$\overline{1}3\overline{2}$]/41° direction По данным: J.Rabier, P.Cordier, T. Tondellier, J. Demenet an H. Garem. Dislocation microstructures in Si plastically deformed at RT, Condens. Matter, 2000. P.10059-10064.

Результаты расчетов

Рис.1. Расчетная зависимость градиента температуры (а) на поверхности кремниевой пластины и схематичное изображение ямок травления (б)

Рис.2. Зависимость плотности дислокаций от энергии электрического импульса (а) при τ =150 мкс, N_{d0} =5·10⁷ м⁻² и от длительности одиночного токового импульса (б) j=8.8·10¹⁰ A/м²; N_{d0} =8·10⁸ м⁻²

Рис. 1. 3D-модель, используемой для расчетов термоупругих напряжений в образце

выводы

1. Установлена взаимосвязь процессов контактного плавления на межфазной границе полупроводник-металл и оплавления пленки металла.

2. Выявлено, что оплавление дорожки металлизации и перемещение межфазной границы в условиях прохождения токового импульса связано с тепловыделением на границе твердой и жидкой фазы.

3. Изучены процессы дефектообразования в полупроводнике после токового термоудара. На примере образования приповерхностных дислокаций показано, что начало процессов дефектообразования носит пороговый характер.

Системы металлизации в структурах печатной электроники

Рис. 1. Фотографии структур медь-ситалл

Рис. 2. Фотографии структур серебро-кварцевая керамика

Система металлизации на основе углеродных нанотрубок и металлической матрицы (совместно с ИНМЭ РАН)

VA

V3

V5

15.00 kV ETD

15 000

-42.57 PM

27

Nova 600

Гибкие биморфные зеркала с высокой плотностью управляющих электродов (совместно с ИДГ РАН)

Спасибо за внимание!

А. А. Скворцов Московский политехнический университет, зав. кафедрой «Динамика, прочность машин и сопротивление материалов»

107023, Москва, ул. Б.Семёновская, 38 E-mail: SkvortsovAA2009@yandex.ru

