Москва, ИРЭ им. В.А. Котельникова РАН

Федотов Сергей Дмитриевич

Докладчик: к.т.н., научный сотрудник АО «Эпиэл»

Ключевые области использования GaN

Твердотельные лазеры

Оптические носители информации (DVD, BluRay)

Лазерные телевизоры и мониторы

Проекторы

Медицинские приборы

LED

Наружное и внутреннее освещение Телевизоры и мониторы Мобильные устройства Знаки и указатели Автомобильная оптика и электроника

СВЧ электроника

Сотовая связь - базовые станции 4G / LTE / 5G, 6G+ Военная техника Спутниковая связь СВЧ энергия (альтернатива магнетронам) Проводная широкополосная связь

Беспроводные коммуникации Радары / авионика

Силовая электроника

Электропитание Электродвигатели (электромобили, промышленность)

Солнечная энергетика

Источники бесперебойного питания

Оборудование для серверов и дата-центров

Технологии получения эпитаксиального GaN

GaN-on-GaN GaN-on-Sapphire Эпитаксиальный слой GaN Эпитаксиальный спой GaN Буферные слои Ga(AI)N Пластина GaN Пластина сапфира (Al₂O₃) Диаметр до 50.8 мм Диаметр до 150 мм Идеальное совпадение Среднее рассогласование кристаллических решеток кристаллических решеток (14,8%)Потенциально высокое качество эпитаксиального слоя GaN Необходимость роста

переходных слоев

эпитаксиального слоя

Проблемы с качеством

Неудовлетворительные

характеристики приборов

Низкая теплопроводность

Низкое качество

сапфира

Очень дорогой материал (>2000 \$/пл.)

Максимальный диаметр подложек - 50,8 мм

Низкое качество подложек

Экономически неэффективный материал

Проблемы с качеством из-за подложек

GaN-on-SiC Эпитаксиальный слой GaN Начальный слой AIN Карбид кремния (SiC)

Диаметр до 150 мм

Минимальное рассогласование кристаллических решеток (3,3%)

Потенциально высокое качество эпитаксиального слоя GaN

Преимущества высочайшей теплопроводности и изолирующих свойств SiC

Очень дорогие подложки малого диаметра

Монополия рынка - Cree Неустойчивое качество подложек

Экономически неэффективный материал Проблемы с качеством

Эпитаксиальный слой GaN Буферные слои Ga(Al)N Кремниевая пластина (Si)

GaN-on-Si

Диаметр до 200 мм

Значительное рассогласование кристаллических решеток (18%)

Используются толстые подложки Cz Si или FZ Si

Сложная технология роста (необходимость роста переходных слоев)

Низкое качество эпитаксиального слоя. деформация пластин

Потенциально экономически эффективный материал

Проблемы с качеством

ПРОБЛЕМА

Значительное рассогласование кристаллических решеток Si и GaN (17%) и разница коэффициентов термического расширения приводит к искривлению пластины и образованию многочисленных дефектов, снижающих качество эпитаксиального слоя

	Si	4H-SiC	GaN
Постоянная решетки, Å	5,4	3,1	3,2
Рассогласование с GaN	17%	3,2%	-

СТАНДАРТНОЕ РЕШЕНИЕ

Формирование ряда переходных слоев (буфер) AIN, AIGaN, GaN для снижения плотности дефектов в переходной области и повышения качества эпитаксиального слоя.

Сложная многослойная конфигурация буфера – ноу-хау каждого производителя.

НЕДОСТАТКИ

- Толстый многослойный буфер осложняет и удорожает технологический процесс
- Эпитаксиальные слои содержат множество структурных дефектов
- Проблема искривления пластины (прогиб) не решается

Мотивация к использованию темплейтов 3C-SiC/Si

Материал	Si	3C-SiC	4H-SiC
Ширина запрещенной зоны (эВ)	1,12	2,35	3,02
Напряжение пробоя (MB см ⁻¹ при N _D =5×10 ¹⁵ см ⁻³)	0,3	1,5	2,4
Подвижность электронов (см² В-1 с-1)	1350	900	800
Подвижность Холла (см² В-1 с-1)	480	40	120
Скорость насыщения (×10 ⁷ см с ⁻¹)	1	2	2
Теплопроводность (Вт см ⁻¹ К ⁻¹)	1,5	3,2	3,7
Диэлектрическая константа є	11,7	9,7	9,6

GaN	
АІN, буфер	
3C-SiC	
Si (sub.)	

Сравнение буферных слоев структуры GaN/AIN/SiC/Si			
слой	Рассогласование	Рассогласование решетки с	КТЛР in-plane
	решетки с GaN (%)	AIN (%)	(x10 ⁻⁶ K- ¹)
Si (sub.)	17	19	2,6
3C-SiC	3,9	0,95	3,9
AIN	2,5	-	4,2
GaN	-	2,5	5,6

Технологии 3C-SiC: метод газофазной эпитаксии

Методы CVD (а) и замещения атомов (b)

```
2Si (solid) + CO (gas) = SiC (solid) + SiO \uparrow (gas)
```


Схематическое изображение упругих диполей в кубической решетке Si.

Гетероструктуры 3С-SiC/Si (LPE, Италия)

Гетероструктуры 3C-SiC/Si (Air water, Япония)

Diameter	2"~8" diameter
Epi film	2.0~3.5 um-thick SiC(111) layer
Crystal	XRC-FWHM (SiC(111), ω-scan) 500~800 arcsec
Applications	GaN-power, LED, MEMS, Photonic crystal, Artificial Photosynthesis/Photocatalyst, SAW filter, Diamond and ZnO heteroepitaxial substrate etc.

Технологии 3C-SiC: опыт АО Эпиэл

Гетероструктуры 3C-SiC/Si (Advanced epi., UK)

Исходные темплейты 3C-SiC/Si(111)

Эксперимент и оборудование

Нанотехнологический комплекс Нанофаб-100

Модуль МЛЭ STE3N3 (SemiTEq GmbH) предназначен для исследований в области молекулярно-лучевой эпитаксии нитридов III группы с использованием аммиака в качестве источника активного азота.

- Бесконтактный ИК-нагрев
- Сверхвысокая чистота МЛЭ в атмосфере аммиака
- Предварительный отжиг подложек >1 ч при 650 °C
- Масс-спектрометрия в режиме реального времени
- Давление в ростовой камере нитридного модуля ~1,3×10-8 Па

МЛЭ рост AIN на подложке 3C-SiC/Si 100 мм в ростовом модуле STE3N3

Эксперимент и оборудование

14

Внешний вид гетероструктур AIN/3C-SiC/Si(111)

Внешний вид гетероструктур AIN/3C-SiC/Si(111)

ACM гетероструктур AIN на 3C-SiC/Si(111) on-axis

ACM гетероструктур AIN на 3C-SiC/Si(111) 4° off-axis

АСМ гетероструктур AIN/3C-SiC/Si(111)

Статистические данные АСМ поверхности гетероструктур AIN/3C-SiC/Si(111)

V _p , нм/ч	точка	R _a , нм	RMS, нм	Average RMS, нм
		on-axis		
50	центр	7,15	9,05	0.77
	R/2	6,72	8,86	0,77
80	центр	2,71	4,57	2 07
	R/2	2,42	4,24	3,07
400	центр	1,88	3,50	2.50
100	R/2	2,69	3,92	3,52
150	центр	1,31	2,25	2 52
150	R/2	1,28	2,59	2,55
		off-axis		
50	центр	7,14	11,29	11 00
50	R/2	7,33	11,72	11,00
80	центр	2,76	3,5	2 40
80	R/2	2,63	3,36	3,49
90	центр	3,20	4,65	1.04
	R/2	3,87	5,26	4,94
90 +10 мин LT-AIN	центр	2,67	3,56	2 21
	R/2	2,63	3,48	3,31
100	центр	4,95	6,2	E 22
	R/2	4,48	5,98	5,25
150	центр	5,88	7,74	6 76
	R/2	6,34	8,35	0,70

Рентгеноструктурный анализ слоев AIN на 3C-SiC/Si(111)

ep

e

200 нм Al_{0.3}Ga_{0.7}N/AIN/3C-SiC/Si

on-axis RMS 5 нм

45 35 39 m 3,0 30 µm 2,5 25 mn 2,0 20 15 10 0,5 5 0 0 0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 μm

4° off-axis RMS 6 нм

Гетероструктуры GaN на подложках 3C-SiC/Si(111) on-axis

Гетероструктуры GaN на подложках 3C-SiC/Si(111) 4° off-axis

eple

Выводы

• Исследованы особенности роста эпитаксиальных слоев AIN на темплейтах 3C-SiC/Si(111) с отклонением ориентации подложки Si от плоскости (111) на 4° (off-axis) и без отклонения (on-axis) с помощью метода аммиачной МЛЭ с использованием технологического подхода формирования низкотемпературного зародышевого слоя AIN.

• Продемонстрирована потенциальная возможность снижения шероховатости рабочей поверхности гетероструктуры 3C-SiC/Si с помощью наращивания сплошного смачивающего слоя AIN, предназначенного для последующего роста соединений Ga(AI)N. Характер осциллограмм сигнала интерферометра, получаемых во время роста AIN, свидетельствовал о протекании различного механизма роста на поверхности 3C-SiC/Si(111) в случае on-axis и 4° off-axis, ориентации подложки.

• Результаты АСМ подтвердили предположения о протекании различного механизма роста AIN, вследствие различия морфологии поверхности слоев. Наращивание слоя AIN толщиной около 200 нм на темплейте 3C-SiC/Si(111) on-axis позволило уменьшить среднеквадратичную шероховатость рабочей поверхности на ~20% до среднего значения 2,53 нм.

• Рентгеноструктурный анализ показал, что увеличение V_p для образцов off-axis приводит к ухудшению кристалличности, а для образцов on-axis при увеличении V_p на 50 нм/ч величина FWHM уменьшается на 0,2° до среднего значения 1,2°.

•В целях дальнейшего снижения шероховатости поверхности и улучшения кристалличности GaN требуется оптимизация процесса роста, включающая поиск оптимальных параметров скорости роста, температуры нагрева подложки и толщины слоя.

Благодарю за внимание!