

Федеральное государственное автономное научное учреждение Институт СВЧ полупроводниковой электроники им. В. Г. Мокерова РАН, Москва

Физико-технологические аспекты создания СВЧ приборов на полупроводниковых структурах АЗВ5: эпитаксия и субмикронная литография

Евгений Климов (лаб. МЛЭ)

Ринат Галиев (лаб. ЭЛЛ)

Две установки электронно-лучевой литографии (пр-во Raith GmbH, Германия)

Raith150-Two (c 2008 r.)

СВЧПЭ

PAH

Voyager (с 2014 г.)

E _{acc}	130 кэВ	3050 кэВ
I _{beam}	до 20 нА	до 40 нА
D _{beam} min	~1.6 нм	< 2.5 нм @50 кэВ
Размер поля	< 250 ² мкм ² ; режим РЭМ x30x10 ⁶	до 500 ² мкм ²
Точность сшивки/совмещения	не хуже 40 нм (μ +3σ)	не хуже 25 нм (μ +3σ); режим MBMS (литография периодических структур без сшивки полей)
Паттерн-генератор	20 МГц/16 бит	50 МГц/20 бит

Технологические подходы к формированию Т-образных затворов СВЧ-транзисторов (GaN, GaAs, InP HEMT)

Профиль в многослойных резистах

Комбинации резиста и диэлектрика для достижения нужного профиля

Nanoimprint-технологии

Microelectronic Engineering Vol. 67–68, June 2003, pp. 189-195

Самосовмещенные технологии (gate first)

J. of the Korean Physical Society, Vol. 33, No. , Nov. 1998, pp. S374-S378

Технологии с гальваническим

наращиванием

Microelectronic Engineering, Vol. 121, pp. 153–155, (2014).

Т-затворы по маске резиста

ФТП, 2014, т. 48, № 1, с. 73–76

Т-затворы по маске резиста

6-слойный резист (30..50 кэВ, двойное экспонирование/проявление)

Вариант технологического маршрута «профилированная щель в диэлектрике»

Т-затворы по маске из диэлектрика

Результаты использования маршрута с диэлектриками

- roid rev Lg=109 nm
- Размеры щели (длина затвора) 60-100 нм и менее
- Воспроизводимость геометрии
- Возможность контроля на каждом этапе
- Профиль с положительным наклоном стенок

Периодические структуры:

фотопроводящие ТГц-антенны с плазмонными решётками

Плазмонная решётка (ПР) - электрод в виде металлической гребёнки с шагом ~200 нм. Используется в фотопроводящих антеннах (ФПА) излучения ТГц диапазона для значительного увеличения эффективности оптико-ТГц конверсии (λ_{pump}=800..1500 нм)

Используются подложки со структурами LT-GaAs и InAs-QDs

AIP Advances, vol. 9, pp. 015112-1-5, 2019

Периодические структуры: фотопроводящие ТГц-антенны с плазмонными решётками

Коррекция эффектов близости

- Высокая плотность рисунка (~100 нм ширина линии с шагом ~200 нм)
- Подложка GaAs требует коррекции эффектов близости даже на 50 кэВ
- Высота/ширина металлизации >1:1 требует толщины резиста >150 нм

Весовая аппроксимация функции рассеяния (из данных Монте-Карло) в критическом диапазоне 30-200 нм

Проявление резиста без коррекции эффектов близости

Омниполярные плазмонные решётки

Периодические структуры: латерально связанные брэгговские решётки для одномодовых РОС-лазеров

Лазерные гетероструктуры с MQW InAlAs/InGaAlAs на подложках InP

Параметры решёток :

- Диапазон периода решетки Λ ≈ 235..250 нм
- Длина непрерывной области
 L = 0.2 10.0 мм
- Фазовый сдвиг λ/4 (Λ/2) в позиции L/2
- Точность задания периода не хуже 0.2 нм
- Глубина травления 100-150 нм

Паразитная боковая засветка электронами толстого резиста у края гребня требует оптимизации процессов нанесения и проявления

Схема лазера

Скол структуры с полоском-гребнем

Прецизионная литография дифракционной решётки вплотную к краю уже сформированного гребня представляет собой нетривиальную задачу

Отрыв и схлопывание ламелей резиста у края гребня

Устойчивая маска резиста после оптимизации процессов

Результат переноса маски резиста в слой SiO₂, используемый для дальнейшего ионно-химического травления слоя InP

Периодические структуры: брэгговские решётки для одномодовых РОС-лазеров

Полученные результаты

Р _{out} [500 мА]	> 165 мВт	Δλ/ΔΤ	0.09 нм/°С
λ ₀	1.55 мкм	Δλ/Δι	4.3·10 ^{-з} нм/мА
Подавление боковых мод	не хуже 55 дБ		

Спасибо за внимание!